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Operators

2.1 Bounded Linear Operators

Recall from real analysis that if J is a subset of R and if f is a real
valued function defined on J , then

(i) f continuous at a point t0 ∈ J does not imply that it is
continuous at another point t1 ∈ J ;

(ii) f continuous at every point t ∈ J does not imply that it is
uniformly continuous on J ;

(iii) f uniformly continuous on J does not imply that it is Lips-
chitz continuous on J .

However, we prove below that for a linear operator between normed
linear spaces, Lipschitz continuity, uniform continuity, continuity,
and continuity at a point are all equivalent.

First recall that a linear operator or linear transformation be-
tween linear spaces X and Y is a function A : X → Y satisfying the
conditions

A(x+ y) = A(x) +A(y) and A(αx) = αA(x)

for all x, y ∈ X and α ∈ K.

Theorem 2.1.1 Let X, Y be normed linear spaces and A : X → Y
be a linear operator. Then the following are equivalent.

(i) A is continuous at the point 0.

(ii) There exists c > 0 such that ‖Ax‖ ≤ c‖x‖ for all x ∈ X.

(iii) A is uniformly continuous on X.
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66 Operators

Proof. The implications (ii) =⇒ (iii) =⇒ (i) are obvious. Hence,
it is enough to prove (i) =⇒ (ii).

Assume that (i) holds. Since A(0) = 0, there exists δ > 0 such
that

‖x‖ < δ =⇒ ‖Ax‖ < 1.

Hence, for every x 6= 0, since the vector δx/2‖x‖ is of norm less than
δ, we have

‖A
( δx

2‖x‖

)
‖ < 1,

so that

‖Ax‖ ≤ 2

δ
‖x‖ ∀x ∈ X

Thus, (i) =⇒ (ii).

Continuity of a linear operator A : X → Y is also equivalent to
the following:

(a) The image of every bounded subset of X is bounded in Y .

(b) The set {‖Ax‖ : ‖x‖ = 1} is bounded.

In view of the characterization (a) above for a continuous linear op-
erator, we have the following definition.

Definition 2.1.1 A continuous linear operator is also called a bounded
linear operator. ♦

2.1.1 Space of bounded linear operators

Throughout this chapter, when we say that A : X → Y is a bounded
linear operator, it is assumed that X and Y are normed linear spaces.

Notation 2.1.1 The set of all bounded linear operators from X to
Y is denoted by B(X,Y ). ♦

Thus,

A ∈ B(X,Y ) ⇐⇒ ∃ c > 0 such that ‖Ax‖ ≤ c‖x‖ ∀x ∈ X.

Theorem 2.1.2 Let X, Y be normed linear spaces. Then B(X,Y )
is a linear space, and the function ν : B(X,Y )→ R defined by

ν(A) := inf{c > 0 : ‖Ax‖ ≤ c‖x‖ ∀x ∈ X}, A ∈ B(X,Y ),

is a norm on B(X,Y ).
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Proof. Clearly B(X,Y ) is a subset of the linear space L(X,Y ) of
all linear operators from X to Y . We observe that for A ∈ B(X,Y ),
we have

ν(A) = 0 ⇐⇒ A = 0.

and
‖Ax‖ ≤ ν(A)‖x‖ ∀x ∈ X.

Thus, for A,B in B(X,Y ),

‖(A+B)x‖ ≤ (ν(A) + ν(B))‖x‖, ∀x ∈ X,

‖(αA)(x)‖ = |α| ‖Ax‖ ≤ |α|ν(A)‖x‖ ∀x ∈ X.

Therefore A+B, αA ∈ B(X,Y ) and

ν(A+B) ≤ ν(A) + ν(B), ν(αA) ≤ |α|ν(A).

In particular, B(X,Y ) is a subspace of the space L(X,Y ). Further,
the equality ‖(αA)(x)‖ = |α| ‖Ax‖ for all x ∈ X also shows that
|α|ν(A) ≤ ν(αA) so that

ν(αA) = |α|ν(A).

Thus, we have also shown that ν is a norm on B(X,Y ).

Convertion: Hereafter, the norm on the space B(X,Y ) will be the
one given in Theorem 2.1.2, and it will be denoted by ‖A‖.

Remark 2.1.1 If c > 0 is such that ‖Ax‖ ≤ c‖x‖ for all x ∈ X,
then

‖A‖ ≤ c.

If in addition, there exists x0 6= 0 inX such that ‖Ax0‖ = c‖x0‖, then
we also have c ≤ ‖A‖ so that we obtain ‖A‖ = c. This observation
will help us computing the norms of certain operators. ♦

• For A ∈ B(X,Y ), the quantities

αA := sup{‖Ax‖ : ‖x‖ ≤ 1},

βA := sup{‖Ax‖ : ‖x‖ = 1},

γA := sup
{‖Ax‖
‖x‖

: x 6= 0
}

are finite and are equal to ‖A‖.
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Definition 2.1.2 We use the notation B(X) for B(X,X) and X ′ for
B(X,K).

1. The space X ′ is called the dual space or simply the dual of X
and its elements are called continuous linear functionals or
bounded linear functionals. Continuous linear functionals
are usually denoted by small scale letters f, g, etc.

2. An operator in B(X) is called a a bounded linear operator
on X.

♦

Theorem 2.1.3 If Y is a Banach space, then B(X,Y ) is a Banach
space. In particular, for every normed linear space X, X ′ is a Banach
space.

Proof. Suppose Y is a Banach space. We have to show that every
Cauchy sequence of operators in B(X,Y ) converges to an operator
in B(X,Y ). So, let (An) be a Cauchy sequence in B(X,Y ) and ε > 0
be given. Let N ∈ N be such that

‖An −Am‖ < ε ∀n,m ≥ N.

Hence, for any x ∈ X, we have

‖(An −Am)x‖ ≤ ‖An −Am‖‖x‖ < ε‖x‖ ∀n,m ≥ N.

Thus, for each x ∈ X, (Anx) is a Cauchy sequence in Y . Since Y is
a Banach space, (Anx) converges in Y . Let A : X → Y be defined
by

Ax := lim
n→∞

Anx, x ∈ X.

It can be easily seen that A is a linear operator. Also, since (An) is a
Cauchy sequence, it is bounded. Let M > 0 be such that ‖An‖ ≤M
for all n ∈ N. Hence,

‖Ax‖ = lim
n→∞

‖Anx‖ ≤M‖x‖ ∀x ∈ X.

Thus, A ∈ B(X,Y ). Further, we have

‖Anx−Ax‖ = lim
m→∞

‖(An −Am)x‖ ≤ ε‖x‖ ∀x ∈ X, n ≥ N.

Thus, ‖An − A‖ ≤ ε for all n ≥ N , showing that (An) converges to
A in B(X,Y ).
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Remark 2.1.2 We shall prove in the next chapter, as a consequence
of a theorem called Hahn-Banach extension theorem, that the con-
verse of Theorem 2.1.3 is also true. ♦

The following theorem gives a class of examples of bounded op-
erators.

Theorem 2.1.4 Let X and Y normed linear spaces and A : X → Y
be a linear operator. If dim (X) <∞, then A ∈ B(X,Y ).

Proof. Let dim (X) = n and E = {u1, . . . , uk} be an ordered
basis of X. For x =

∑k
i=1 αiui in X, let

‖x‖E := max{|αi| : i = 1, . . . , k}.

We know that ‖·‖E is a norm on X which is equivalent to the original
norm on X. Thus, there exists c0 > 0 such that ‖x‖E ≤ c0‖x‖ for
all x ∈ X. Hence, for all x ∈ X,

‖Ax‖ ≤
k∑
i=1

|αi| ‖Aui‖ ≤ ‖x‖E
k∑
i=1

‖Aui‖ = c‖x‖,

where c = c0
∑k

i=1 ‖Aui‖.

A natural question is whether the assumption dim (X) <∞ in the
above theorem can be dropped or can be replaced by dim (Y ) <∞.
The following example shows that the answer is in negative.

Example 2.1.1 (A discontinuous linear functional) Let X be
the space c00 with ‖ · ‖∞ and let f : c00 → K be defined by

f(x) =
∞∑
j=1

x(j), x ∈ c00.

Then f is a linear functional on X. But, f 6∈ X ′. To see this, let

xn(i) =

{
1, j ≤ n,
0, j > n

for n ∈ N. The we see that xn ∈ c00, ‖xn‖∞ = 1 and f(xn) = n for
all n ∈ N. Thus, (xn) is a bounded sequence whose image is not a
bounded sequence. �



70 Operators

The following corollary is immediate from Theorem 2.1.4 by ob-
serving that the inverse of a linear operator is a linear operator.

Corollary 2.1.5 Any two finite dimensional normed linear spaces
of the same dimension are linearly homeomorphic.

2.1.2 Examples of bounded linear operators

Now, let us give some examples of bounded linear operators whose
domains are infinite dimensional spaces.

Example 2.1.2 Let (λn) be a bounded sequence of scalars and
A : `p → `p be defined by

(Ax)(i) = λix(i), i ∈ N.

Let β := supn∈N |λn|. Then we obtain

‖Ax‖p ≤ β‖x‖p ∀x ∈ `p

so that A is a bounded linear operator and ‖A‖ ≤ β. Also, we have

|λn| = ‖λnen‖p = ‖Aen‖p ≤ ‖A‖ ∀n ∈ N

so that β ≤ ‖A‖. Thus, we have proved that ‖A‖ = β. �

Example 2.1.3 Let X = C[a, b] with ‖ · ‖∞. For u ∈ C[a, b], let

(Aux)(t) = u(t)x(t), x ∈ C[a, b], t ∈ [a, b].

Then we have

‖Aux‖∞ ≤ ‖u‖∞‖x‖∞ ∀x ∈ C[a, b]

so that A ∈ B(X) and ‖Au‖ ≤ ‖u‖∞. Further, if x0(t) = 1 for all
t ∈ [a, b], then we have

|u(t)| = |(Aux0)(t)| ≤ ‖Au‖ ∀ t ∈ [a, b]

so that ‖u‖∞ ≤ ‖Au‖. Thus, we have proved that ‖Au‖ = ‖u‖∞.
Also, the function T : X → B(X) defined by

T (u) = Au, u ∈ X,

is a linear operator. Note also that

‖T (u)‖ = ‖Au‖ = ‖u‖, u ∈ X,
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so that T is a linear isometry. Thus, X can be viewed as the subspace

R(T ) = {Au : u ∈ C[a, b]}

of the space B(X). �

Example 2.1.4 Let X = C[a, b] with ‖ · ‖∞.

(i) Let

(Ax)(s) =

∫ s

a
x(t) dt, x ∈ C[a, b], s ∈ [a, b].

Then we see that Ax ∈ C[a, b] for every x ∈ C[a, b] and A is a linear
operator on X. Further, we have

|(Ax)(s)| ≤
∫ s

a
|x(t)| dt ≤ (b− a)‖x‖∞ ∀x ∈ C[a, b], s ∈ [a, b].

Hence, we have ‖Ax‖∞ ≤ (b − a)‖x‖∞ for all x ∈ C[a, b], and con-
sequently, A ∈ B(X) and ‖A‖ ≤ b − a. Also, since x0 defined by
x0(t) = 1 for all t ∈ [a, b] satisfies ‖Ax0‖∞ = (b− a)‖x0‖∞, we have
‖A‖ = b− a.

(ii) Let

f(x) =

∫ b

a
x(t) dt, x ∈ C[a, b].

Then it can be seen (Verify) that f ∈ X ′ and ‖f‖ = b− a. �

Example 2.1.5 Let X = `2, and aij ∈ K be such that

β := sup
i∈N

∞∑
j=1

|aij | <∞ and γ := sup
j∈N

∞∑
i=1

|aij | <∞.

We show that

Ax =

∞∑
i=1

( ∞∑
j=1

aijx(j)
)
ei, x ∈ `2,

defines a bounded linear operator from `2 to itself and ‖A‖ ≤
√
βγ.

Let x ∈ X. Then for each i ∈ N, we have

∞∑
j=1

|aijx(j)| =

∞∑
j=1

|aij |1/2|aij |1/2|x(j)|

≤
( ∞∑
j=1

|aij |
)1/2( ∞∑

j=1

|aij ||x(j)|2
)1/2

.
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Thus, ( ∞∑
j=1

|aijx(j)|
)2
≤ β

∞∑
j=1

|aij ||x(j)|2,

and

∞∑
i=1

( ∞∑
j=1

|aijx(j)|
)2
≤ β

∞∑
i=1

∞∑
j=1

|aij ||x(j)|2

= β

∞∑
j=1

( ∞∑
i=1

|aij |
)
|x(j)|2

≤ βγ‖x‖22.

Hence, for each x ∈ `2 and i ∈ N,

(Ax)(i) :=

∞∑
j=1

aijx(j)

is well-defined, Ax ∈ `2 and ‖Ax‖2 ≤
√
βγ‖x‖2. Thus, A : `2 → `2

is a a bounded operator and ‖A‖ ≤
√
βγ.

Taking aij = λiδij for i, j ∈ N, we recover the Example 2.1.2. �

Example 2.1.6 Let k(·, ·) ∈ C([a, b]× [a, b]). For x ∈ C[a, b], let

(Ax)(s) =

∫ b

a
k(s, t)x(t)dt, s ∈ [a, b].

We see that Ax ∈ C[a, b] for every x ∈ C[a, b].

(i) Let X = C[a, b] with ‖ · ‖∞. Let x ∈ C[a, b]. We have

|(Ax)(s)| ≤
∫ b

a
|k(s, t)| |x(t)|dt ≤ ‖x‖∞

(∫ b

a
|k(s, t)|dt

)
.

Thus,

‖Ax‖∞ ≤ β‖x‖∞, β := sup
a≤s≤b

∫ b

a
|k(s, t)|dt.

Therefore, A ∈ B(X) and ‖A‖ ≤ β. In fact, it is also known that
‖A‖ = β (cf. Nair [5]).

(ii) Let X = C[a, b] with ‖ · ‖2. Let x ∈ C[a, b]. We have

|(Ax)(s)| ≤
∫ b

a
|k(s, t)| |x(t)|dt ≤ ‖x‖2

(∫ b

a
|k(s, t)|2dt

)1/2
.
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so that

‖Ax‖22 =

∫ b

a
|(Ax)(s)|2ds ≤

(∫ b

a

∫ b

a
|k(s, t)|2dt

)
‖x‖22.

Thus, A ∈ B(X) and ‖A‖ ≤ (
∫ b
a

∫ b
a |k(s, t)|2dt)1/2. �

Example 2.1.7 Consider the linear operator A : C1[0, 1]→ C[0, 1]
defined by

(Ax)(t) = x′(t), x ∈ C1[0, 1], t ∈ [0, 1].

Taking

xn(t) =
tn

n+ 1
, n ∈ N, t ∈ [0, 1],

we have

‖xn‖∞ =
1

n+ 1
and ‖Axn‖∞ =

n

n+ 1
.

Thus, with respect to ‖xn‖∞ → 0, but ‖Axn‖∞ 6→ 0. Hence, with
respect to the norm ‖ · ‖∞ on both the spaces C1[0, 1] and C[0, 1], A
is not a bounded operator. However, if we take the norm

‖x‖∗ := ‖x‖∞ + ‖x′‖∞, x ∈ C1[0, 1]

on C1[0, 1], we have

‖Ax‖∞ = ‖x′‖∞ ≤ ‖x‖∗ ∀x ∈ C1[0, 1].

Thus, taking

X = C1[0, 1] with ‖ · ‖∗ and Y = C[0, 1] with ‖ · ‖∞,

we obtain

A ∈ B(X,Y ) and ‖A‖ ≤ 1.

Also, with xn as above, we have ‖xn‖∗ = 1 and

n

n+ 1
= ‖Axn‖∞ ≤ ‖A‖‖xn‖∗ = ‖A‖ ∀n ∈ N

so that we obtain ‖A‖ = 1. �
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Example 2.1.8 Let X be an inner product space and P : X → X
be a nonzero orthogonal projection. Then for every x ∈ X, since

Px ∈ R(P ) and (I − P )x ∈ N(P ) = R(P )⊥,

we have

‖x‖2 = ‖Px+ (I − P )x‖2 = ‖Px‖2 + ‖(I − P )x‖2 ≥ ‖Px‖2.

Hence,
‖Px‖ ≤ ‖x‖ ∀x ∈ X,

showing that P ∈ B(X) and ‖P‖ ≤ 1. Since P is nonzero, there
exists a nonzero x ∈ X such that Px = x so that

‖x‖ = ‖Px‖ ≤ ‖P‖ ‖x‖,

and hence, we also have ‖P‖ ≤ 1. Thus, ‖P‖ = 1. �

Example 2.1.9 Let X be an infinite dimensional Hilbert space
and (un) be an orthonormal sequence in X. Let (λn) be a bounded
sequence of scalars. For x ∈ X, define

Ax =

∞∑
n=1

λn〈x, un〉un.

The above operator A : X → X is well defined. Indeed, if M is a
bound for (|λn|), then for every x ∈ X,

∞∑
n=1

|λn|2 |〈x, un〉|2 ≤M2
∞∑
n=1

|〈x, un〉|2 ≤M‖x‖2,

so that by Riesz-Fischer theorem (Theorem 1.5.4), the series∑∞
n=1 λn〈x, un〉un is convergent. It can be easily seen that A is a

linear operator from X to itself. Further, we have

‖Ax‖2 ≤M2‖x‖2 ∀x ∈ X.

Hence, A ∈ B(X) and ‖A‖ ≤M . Note also that, for every n ∈ N,

|λn| = ‖λnun‖ = ‖Aun‖ ≤ ‖A‖

so that
sup
n∈N
|λn| ≤ ‖A‖.
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Taking M = supn∈N |λn|, we also obtain M ≤ ‖A‖. Thus, we proved
that ‖A‖ = supn∈N |λn|.

Taking X = `2 and un = en, n ∈ N, Example 2.1.2 becomes a
special case. �

Example 2.1.10 Let X and Y be inner product spaces and A ∈
B(X,Y ). Then

‖A‖ = sup{|〈Ax, y〉| : x ∈ X, y ∈ Y with ‖x‖ = 1 = ‖y‖}.

�

2.1.3 Conditions for continuity

In the following theorem we specify a necessary and sufficient con-
dition for a linear functional on a general normed linear space to be
continuous.

Theorem 2.1.6 Suppose X is a normed linear space and f : X → K
is a nonzero linear functional. Then f is continuous if and only if
N(f) is closed, and in that case,

‖f‖ =
|f(x0)|

dist (x0, N(f))

for any x0 6∈ N(f).

Proof. Clearly, if f is continuous, then N(f) is closed.

Conversely, suppose N(f) is closed. Let x0 ∈ X with f(x0) 6= 0.
Then we know that d := dist (x0, N(f)) > 0. Now, every x ∈ X can
be expressed as x = y + z, where

y = x− f(x)

f(x0)
x0, z =

f(x)

f(x0)
x0.

Note that y ∈ N(f). Thus, for x ∈ X,

dist (x,N(f)) = dist (z,N(f)) =

∣∣∣∣ f(x)

f(x0)

∣∣∣∣dist (x0, N(f))

and hence,

|f(x)| ≤ |f(x0)|
dist (x0, N(f))

dist (x,N(f)) ≤ |f(x0)|
dist (x0, N(f))

‖x‖.
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Therefore, f ∈ X ′ and

‖f‖ ≤ |f(x0)|
dist (x0, N(f))

.

Also, for every u ∈ N(f),

|f(x0)| = ‖f(x0 − u)‖ ≤ ‖f‖‖x0 − u‖.

Hence, taking infimum over all u ∈ N(f), we obtain

|f(x0)| ≤ ‖f‖dist (x0, N(f)),

so that

‖f‖ ≥ |f(x0)|
dist (x0, N(f))

.

This completes the proof.

Next theorem would help in inferring the continuity of a linear
operator and also in obtaining an estimate for its norm, in the case
when the spaces involved are inner product spaces.

Theorem 2.1.7 Let A : X → Y be a linear operator between inner
product spaces X and Y . Then A ∈ B(X,Y ) if and only if there
exists β > 0 such that

|〈Ax, y〉| ≤ β‖x‖ ‖y‖ ∀ (x, y) ∈ X × Y, (∗)

and in that case

‖A‖ = sup{|〈Ax, y〉| : ‖x‖ = 1 = ‖y‖} ≤ β.

Proof. Suppose A ∈ B(X,Y ) . Then for every (x, y) ∈ X×Y , by
Cauchy Schwarz inequality, we have

|〈Ax, y〉| ≤ ‖Ax‖ ‖y‖ ≤ ‖A‖ ‖x‖ ‖y‖.

Thus (∗) is satisfied with β = ‖A‖ and

sup{|〈Ax, y〉| : ‖x‖ = 1 = ‖y‖} ≤ ‖A‖. (∗∗)

Conversely, suppose there exists β > 0 such that (∗) holds. We
know that for every x ∈ X,

‖Ax‖ = sup{|〈Ax, v〉| : v ∈ Y, ‖v‖ = 1}.
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Hence,

‖Ax‖ = sup
{ |〈Ax, y〉|
‖y‖

: y ∈ Y, ‖y‖ 6= 0
}
≤ β‖x‖

so that A ∈ B(X,Y ) and ‖A‖ ≤ β. Also, for (x, y) ∈ X × Y with
‖x‖ = 1 = ‖y‖,

‖Ax‖ = sup{|〈Ax, y〉| : y ∈ Y, ‖y‖ = 1},

so that
‖A‖ ≤ sup{|〈Ax, y〉| : ‖x‖ = 1 = ‖y‖}.

This, together with (∗∗) shows that

‖A‖ = sup{|〈Ax, y〉| : ‖x‖ = 1 = ‖y‖}.

Thus the proof is over.

Next theorem provides a sufficient condition for a linear operator
to have a continuous inverse.

Theorem 2.1.8 Let A : X → Y be a linear operator between normed
linear spaces X and Y . Suppose there exists γ > 0 such that

‖Ax‖ ≥ γ‖x‖ ∀x ∈ X.

Then

(i) A is injective,

(ii) A−1 : R(A)→ X is continuous, and

(iii) ‖A−1‖ ≤ 1/γ.

Proof. It is clear that A is injective. Then, for every y ∈ R(A), if
x ∈ X is the unique element in X such that Ax = y, then we obtain

‖y‖ = ‖Ax‖ ≥ γ‖x‖ = ‖A−1y‖.

Thus, A−1 is continuous and ‖A−1‖ ≤ 1/γ.

Definition 2.1.3 A linear operator A : X → Y is said to be
bounded below if there exists γ > 0 such that

‖Ax‖ ≥ γ‖x‖ ∀x ∈ X.

♦



78 Operators

The following two corollaries are immediate from Theorem 2.1.8.

Corollary 2.1.9 Let A : X → Y be a linear operator between
nonzero inner product spaces X and Y . Suppose there exists γ > 0
such that

|〈Ax, y〉| ≥ γ‖x‖ ‖y‖ ∀ (x, y) ∈ X × Y.

Then the conclusions in Theorem 2.1.8 hold.

Corollary 2.1.10 Let A : X → X be a linear operator on an inner
product space X. Suppose there exists γ > 0 such that

|〈Ax, x〉| ≥ γ‖x‖2 ∀x ∈ X.

Then the conclusions in Theorem 2.1.8 hold.

Now, we deduce a theorem which is important in view of its
applications to the theory of partial differential equations.

Theorem 2.1.11 Let X be a Hilbert space and A ∈ B(X) be such
that there exist γ > 0 satisfying

|〈Ax, x〉| ≥ γ‖x‖2 ∀x ∈ X.

Then A is bijective, A−1 ∈ B(X) and ‖A−1‖ ≤ 1/γ.

Proof. By Corollary 2.1.10, A is injective, A−1 : R(A) → X is
continuous and ‖A−1‖ ≤ 1/γ. Hence, it is enough to prove that
R(A) = X. Now, the condition on A implies that R(A) is closed and
R(A)⊥ = {0}. Hence, by projection theorem, R(A) = X.

2.2 Riesz Representation Theorem

Let X be an inner product space. Cooresponding to an element
u ∈ X, consider fu : X → K defined by

fu(x) = 〈x, u〉, x ∈ X.

Clearly, fu is a linear functional. Also, by Cauchy Schwarz inequality,

|fu(x)| = |〈x, u〉| ≤ ‖u‖ ‖x‖, x ∈ X

so that f ∈ X ′. Also, since ‖fu(u)| = ‖u‖2 we have ‖fu‖ = ‖u‖.
What about the converse? Is every continuous linear functional

on X is of the form fu for some u ∈ X? The answer is in negative
as the following example shows.
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Example 2.2.1 Let X = c00 with `2–inner product. Consider the
linear functional f on X defined by

f(x) =

∞∑
j=1

x(j)

j
, x ∈ c00.

Note that, by Schwarz inequality,

|f(x)| ≤
∞∑
j=1

|x(j)|
j
≤ ‖x‖2

∞∑
j=1

1

j2
, x ∈ c00.

Hene, f ∈ X ′. But, there is no u ∈ c00 such that f(x) = 〈x, u〉
for all x ∈ c00. To see this, suppose there exists u ∈ c00 such that
f(x) = 〈x, u〉 for all x ∈ c00. Then, in particular, we have

1

k
= f(ek) = 〈ek, u〉 = u(k) ∀k ∈ N.

This is a contradiction to the fact that u ∈ c00. �

Now, we show that we do have an affirmative answer to the ques-
tion raised above if X is a Hilbert space.

Theorem 2.2.1 (Riesz Representation Theorem) Let X be a
Hilbert space. Then for every f ∈ X ′, there exists a unique uf ∈ X
such that

f(x) = 〈x, uf 〉, x ∈ X.

Further, ‖uf‖ = ‖f‖.

Proof. Let f ∈ X ′. Let us settle the uniqueness issue first. Sup-
pose u1, u2 ∈ X be such that

f(x) = 〈x, u1〉 and f(x) = 〈x, u2〉

for all x ∈ X. Then we have

〈x, u1 − u2〉 = 0 ∀x ∈ X,

so that u1 = u2.

Next, if f = 0, then u = 0 serves the purpose. So, assume that
f 6= 0. Then, by projection theorem (Theorem 1.5.6) N(f)⊥ is a
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nonzero proper closed subspace. Let x0 ∈ N(f)⊥ such that ‖x0‖ = 1.
Now, let x ∈ X. Since x = y + z with

y = x− f(x)

f(x0)
x0, z =

f(x)

f(x0)
x0,

and since y ∈ N(f) and z ∈ N(f)⊥, we have

〈x, x0〉 =
f(x)

f(x0)
〈x0, x0〉 =

f(x)

f(x0)
.

Thus,

f(x) = 〈x, uf 〉 with uf = f(x0)x0.

The fact that ‖f‖ = ‖uf‖ follows, since |f(x)| ≤ ‖uf‖ ‖x‖ for all
x ∈ X and |f(uf )| = ‖uf‖2.

The terminology defined below will be used in the due course.

Definition 2.2.1 Let X and Y be linear spaces. Then a function
T : X → Y is called a conjugate linear if

T (x+ y) = T (x) + T (y) and T (αx) = ᾱT (x)

for all (x, y) ∈ X × Y and α ∈ K. ♦

Remark 2.2.1 Let X be a Hilbert space, and for f ∈ X ′, let uf is
the unique element in X obtained as in Riesz representation theorem.
Then

〈f, g〉′ := 〈ug, ug〉, f, g ∈ X ′

defines an inner product on X ′ and T : X ′ → X defined by

Tf = uf , f ∈ X ′,

is a surjective isometry which is also conjugate linear, i.e., for every
f, g ∈ X ′, and α ∈ K,

T (f + g) = Tf + Tg and T (αf) = ᾱTf.

♦
In view of the above remark, we can identify X ′ with X if X is a

Hilbert space.
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Often, certain problems in partial differential equations can be
converted into the problem of finding a unique u ∈ X such that

ϕ(u, v) = f(v) ∀ v ∈ X,

where X is a Hilbert space, f is a continuous linear functional on
X, and the function ϕ : X × X → K is such that for each y ∈ X,
x 7→ ϕ(x, y) is linear on X and for each x ∈ X, y 7→ ϕ(x, y) is
conjugate linear onX. Riesz representation theorem (Theorem 2.2.1)
and Theorem 2.1.11 can be effectively used in showing the existence
of such solutions.

Definition 2.2.2 Let X and Y be inner product spaces. A function
ϕ : X × Y → K is said to be a sesquilinear form on an inner
product space X × Y if for each y ∈ Y ,

x 7→ ϕ(x, y)

is a linear functional on X and for each x ∈ X,

y 7→ ϕ(x, y)

is a conjugate linear on Y . ♦

Theorem 2.2.2 Let X be a Hilbert space, Y be an inner product
space, and ϕ : X×Y → K be a sesquilinear form on X×Y . Suppose
there exist β such that

|ϕ(x, y)| ≤ β‖x‖ ‖y‖ ∀ (x, y) ∈ X × Y.

Then there exits a unique B ∈ B(Y,X) such that

ϕ(x, y) = 〈x,By〉 ∀ (x, y) ∈ X × Y

and in that case ‖B‖ ≤ β.

Proof. Let y ∈ X. Since x 7→ ϕ(x, y) is a continuous linear
functional on X, by Riesz representation theorem, there exists a
unique zy ∈ X such that

ϕ(x, y) = 〈x, zy〉 ∀x ∈ X.
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Let By := zy, y ∈ X. Note that, for every x ∈ X and y1, y2 ∈ Y and
α ∈ K,

〈x,B(αy1 + y2)〉 = ϕ(x, αy1 + y2)

= ᾱϕ(x, y1) + ϕ(x, y2)

= ᾱ〈x,By1〉+ 〈x,By2〉
= 〈x, αBy1 +By2〉.

Hence, B : Y → X is a linear operator on X. Also, we have

|〈x,By〉| = |ϕ(x, y)| ≤ β‖x‖ ‖y‖ ∀x, y ∈ X,

ao that B ∈ B(Y,X) and ‖B‖ ≤ β. It is easy to see that such an
operator B is unique.

Theorem 2.2.3 (Lax-Milgram theorem) Let X be a Hilbert space
and ϕ : X×X → K be a sesquilinear form on X. Suppose there exist
β, γ > 0 such that

|ϕ(x, y)| ≤ β‖x‖ ‖y‖ ∀x, y ∈ X, (i)

|ϕ(x, x)| ≥ γ‖x‖2 ∀x ∈ X. (ii)

Then, for every f ∈ X ′, there exists a unique u ∈ X such that

ϕ(x, u) = f(x) ∀x ∈ X,

and in that case ‖u‖ ≤ 1

γ
‖f‖.

Proof. Let us settle the uniqueness issue first: Suppose there exist
u1, u2 such that

ϕ(x, u1) = f(x) = ϕ(x, u2) ∀x ∈ X.

Then, we have
ϕ(x, u1 − u2) = 0 ∀x ∈ X.

This implies ϕ(u1−u2, u1−u2) = 0, which implies, by condition (ii),
u1 − u2 = 0.

Now, the rest of the results: By Riesz representation theorem,
there exists a unique v ∈ X be such that

f(x) = 〈x, v〉 ∀x ∈ X,
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and in that case we also have ‖f‖ = ‖v‖.
By Theorem 2.2.2, there exists a unique B ∈ B(X) such that

ϕ(x, y) = 〈x,By〉 ∀x, y ∈ X.

Note that

|〈x,Bx〉| = |ϕ(x, x)| ≥ γ‖x‖2 ∀x ∈ X.

Thus, B ∈ B(X) satisfies the assumption in Theorem 2.1.11. There-
fore, there exists a unique u ∈ X such that

Bu = v and ‖u‖ ≤ 1

γ
‖v‖.

Thus,

ϕ(x, u) = 〈x,Bu〉 = 〈x, v〉 = f(x), ∀x ∈ X,

and

‖u‖ ≤ 1

γ
‖v‖ =

1

γ
‖f‖.

This completes the proof.

2.2.1 Adjoint of an operator

In Theorem 1.5.10 we have seen that if P is an orthogonal projection
on an inner product space X, then

〈Px, y〉 = 〈x, Py〉 ∀x, y ∈ X.

Definition 2.2.3 A linear operator A : X → X on an inner product
space X is called a self adjoint operator if

〈Ax, y〉 = 〈x,Ay〉 ∀x, y ∈ X.

♦

Here are a few examples of self adjoint operator.

Example 2.2.2 Let X = Kn with ‖ · ‖2 and A : Kn → Kn be the
linear operator induced by an n× n matrix (aij) which satisfies

aij = aji ∀ i, j = 1, . . . , n.

Then we see that A is a self adjoint operator. �
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Example 2.2.3 Let X = `2, and aij ∈ K be such that

β := sup
i∈N

∞∑
j=1

|aij | <∞ and γ := sup
j∈N

∞∑
i=1

|aij | <∞.

We have seen in Example 2.1.5 that

Ax =
∞∑
i=1

( ∞∑
j=1

aijx(j)
)
ei

is well defined for each x ∈ `2, Ax ∈ `2, A ∈ B(`2) and ‖A‖ ≤
√
βγ.

Suppose, in addition, that

aij = aji ∀ i, j ∈ N.

Then, using the representation y =
∑∞

k=1 y(k)ek, we can see that

〈Ax, y〉 = 〈x,Ay〉 ∀x, y ∈ `2.

Thus, A is a self adjoint operator.

In particular, if (λn) is a bounded sequence of real numbers, then
the operator

x 7→ (λ1x(1), λ2x(2), . . . , ), x ∈ `2,

is a self adjoint operator. �

Example 2.2.4 Let k(·, ·) ∈ C([a, b] × [a, b]), and for x ∈ C[a, b],
let

(Ax)(s) =

∫ b

a
k(s, t)x(t)dt, s ∈ [a, b].

Let X = C[a, b] with the norm ‖ · ‖2. We have seen in Example 2.1.6

that A ∈ B(X) and ‖A‖ ≤
∫ b
a

∫ b
a |k(s, t)|2dt. If, in additiion,

k(s, t) = k(t, s) ∀s, t ∈ [a, b],

then we see that

〈Ax, y〉 = 〈x,Ay〉 ∀x, y ∈ C[a, b],

so that, in this case, A is a self adjoint operator on X. �
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There are plenty of examples of linear operators on inner product
spaces which are not self adjoint. However, corresponding to a linear
operator A on X, one may be able to find an operator B : X → X
such that

〈Ax, y〉 = 〈x,By〉 ∀x, y ∈ X.

Note that if such an operator B exists, then it is unique.

Definition 2.2.4 Let X and Y be inner product spaces and let A :
X → Y be a linear operator. If there is a linear operator B : Y → X
such that

〈Ax, y〉 = 〈x,By〉 ∀x ∈ X, y ∈ Y,

then B is called the adjoint of A, and it is denoted by A∗. ♦

• A linear operator A : X → X on an inner product space X is
self adjoint if and only if A∗ exists and A∗ = A.

A linear operator between inner product spaces need not have an
adjoint as the following examples shows.

Example 2.2.5 Let X = c00 be with `2-inner product and let
A : X → X be defined by

Ax =
( ∞∑
j=1

x(j)

j

)
e1, x ∈ c00.

Then for every x, y ∈ c00, we have

〈Ax, y〉 = y(1)

∞∑
j=1

x(j)

j
.

In particular,

〈Aen, e1〉 =
1

n
∀n ∈ N.

Assume for a moment that this A has an adjoint, say B. Then we
have

1

n
= 〈Aen, e1〉 = 〈en, Be1〉 = (Be1)(n) ∀n ∈ N.

This is a contradiction to the fact that Be1 ∈ c00. Thus, we have
proved that the operator A does not have an adjoint. �
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However, every bounded operator between Hilbert spaces does
have the adjoint, as the following theorem shows.

Theorem 2.2.4 Let X and Y be Hilbert spaces and A ∈ B(X,Y ).
Then A∗ exists and A∗ ∈ B(X). Further,

‖A∗‖ = ‖A‖ and ‖A∗A‖ = ‖A‖2.

Proof. Note that ϕ : X × Y → K defined by

ϕ(x, y) = 〈Ax, y〉, (x, y) ∈ X × Y,

is a sesquilinear functional. Hence, by Theorem 2.2.2, there exists a
unique B ∈ B(Y,X) such that

ϕ(x, y) = 〈x,By〉, (x, y) ∈ X × Y.

Thus, B = A∗. From the relation

〈Ax, y〉 = 〈x,A∗y〉, (x, y) ∈ X × Y,

it follows, using Cauchy Schwarz inequality that ‖A‖ = ‖B‖. Fur-
ther,

‖A∗A‖ ≤ ‖A∗‖ ‖A‖ = ‖A‖2

and for every x ∈ X,

‖Ax‖2 = 〈Ax,Ax〉 = 〈A∗Ax, x〉 ≤ ‖A∗Ax‖ ‖x‖ ≤ ‖A∗A‖ ‖x‖2.

From this, we obtain,

‖A‖2 ≤ ‖A∗A‖.

Thus, we have proved ‖A∗A‖ = ‖A‖2. This completes the proof.

We observe the following facts (Exercise):

1. LetX and Y be Hilbert spaces, and A,B ∈ B(X,Y ) and α ∈ K.
Then

(A∗)∗ = A, (A+ αB)∗ = A∗ + ᾱB∗.

2. Let X,Y, Z be Hilbert spaces, and A ∈ B(X,Y ) and B ∈
B(Y, Z). Show that (BA)∗ = A∗B∗.
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Remark 2.2.2 We have seen that adjoint for a linear operator need
not exist if the space is an incomplete inner product space.

Can we weaken the requirement in the definition so that an ad-
joint always exist?

Suppose A : X → Y is a linear operator between inner product
spaces. Let us consider the set

Y0 := {y ∈ Y : ∃ z ∈ X such that 〈Ax, y〉 = 〈x, z〉 ∀x ∈ X}.

It can be easily seen that Y0 is a subspace of Y and for every y ∈ Y0

there exists a unique zy ∈ X such that

〈Ax, y〉 = 〈x, zy〉 ∀x ∈ X.

Thus, we can define B : Y0 → X by

By = zy, y ∈ Y0,

and we see that B : Y0 → X is a linear operator satisfying

〈Ax, y〉 = 〈x,By〉 ∀x ∈ X, y ∈ Y0.

The above B may also be called an adjoint of A. The problem
with this definition is that the the space Y0 may be too small or
the operator B may be the zero operator. For instance, in Example
2.2.5, we have e1 6∈ Y0 and for k = 2, 3, . . .,

〈Ax, ek〉 = 0 ∀x ∈ X,

so that

Y0 = span {ek : k = 2, 3, . . .} and By = 0 ∀ y ∈ Y0.

♦

2.2.2 Self adjoint, normal and unitary operators

Let X be Hilbert space and A ∈ B(X,Y ). Then we know that

A is self adjoint if and only if A∗ = A.

Definition 2.2.5 Let X be Hilbert space and A ∈ B(X,Y ). Then
A is said to be a

(a) normal operator if A∗A = AA∗,

(c) unitary operator if A∗A = I = AA∗. ♦
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Theorem 2.2.5 Let X be a Hilbert space. If A ∈ B(X) is a self
adjoint operator, then

‖A‖ = sup{|〈Ax, x〉| : x ∈ X, ‖x‖ = 1}.

Proof. Let A ∈ B(X) be a self adjoint operator. Clearly,

γ := sup{|〈Ax, x〉| : x ∈ X, ‖x‖ = 1} ≤ ‖A‖.

Next, let x ∈ X be such that ‖x‖ = 1 and ‖Ax‖ 6= 0. It is enough to
show that ‖Ax‖ ≤ γ.

First we observe, using the self adjointness of A, that for every
y ∈ X,

〈A(x+ y), (x+ y)〉 − 〈A(x− y), (x− y)〉 = 4Re〈Ax, y〉.

Thus,

Re〈Ax, y〉 =
1

4

(
〈A(x+ y), (x+ y)〉 − 〈A(x− y), (x− y)〉

)
=

1

4

(
|〈A(x+ y), (x+ y)〉|+ |〈A(x− y), (x− y)〉|

)
≤ 1

4
γ (‖x+ y‖2 + ‖x− y‖2).

Since ‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2), by using parallelogram
law, we have

Re〈Ax, y〉 ≤ γ

2
(‖x‖2 + ‖y‖2).

Now, taking y =
Ax

‖Ax‖
, we obtain ‖Ax‖ = Re〈Ax, y〉 ≤ γ.

The proof of the following corollary is immediate.

Corollary 2.2.6 Let X be a Hilbert space and A ∈ B(X) be a self
adjoint operator. Then

A = 0 ⇐⇒ 〈Ax, x〉 = 0 ∀x ∈ X.

The above corollary shows that a self adjoint operatorA is uniquely
determined by its values 〈Ax, x〉, x ∈ X. Indeed, if A1 and A2 are self
adjoint operators on a Hilbert sapce X such that 〈A1x, x〉 = 〈A2x, x〉
for all x ∈ X, then

〈(A1 −A2)x, x〉 = 0 ∀x ∈ X

so that by by Corollary 2.2.6, A1 = A2.
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Theorem 2.2.7 Let X be a Hilbert space and A ∈ B(X,Y ).

(i) A is a normal operator if and only if ‖Ax‖ = ‖A∗x‖ for every
x ∈ X.

(ii) A is a unitary operator if and only if ‖Ax‖ = ‖x‖ for every
x ∈ X and A is surjective.

Proof. Observe that for x ∈ X,

‖Ax‖2 = 〈Ax,Ax〉 = 〈x,A∗Ax〉,

‖A∗x‖2 = 〈A∗x,A∗x〉 = 〈x,AA∗x〉.

Thus, for x ∈ X,

‖Ax‖ = ‖A∗x‖ ⇐⇒ 〈x, (A∗A−AA∗)x〉 = 0,

‖Ax‖ = ‖x‖ ⇐⇒ 〈x, (A∗A− I)x〉 = 0,

Since A∗A−AA∗ and A∗A− I are self adjoint, by Corollary 2.2.6,

(i) A∗A−AA∗ = 0 if and only if ‖Ax‖ = ‖A∗x‖ for every x ∈ X,

(ii) A∗A = I if and only if ‖Ax‖ = ‖x‖ for every x ∈ X.

Note that, if A∗A = I, then A is injective, and if, in addition, A is
surjective, then A is bijective and A∗ = A−1 so that A is unitary.
This completes the proof.

2.3 The Dual Space of Certain Spaces

We know that if X is a Hilbert space, then its dual can be identified
with X by a conjugate linear isometry. Also, we know that for every
normed linear spaceX, its dual space X ′ is a Banach space with
respect to the norm

‖f‖ := sup{|f(x)| : ‖x‖ ≤ 1}, f ∈ X ′.

So, in general, we cannot expect that X is linearly isometric with
X ′, not even necessary to be homeomorphic with X ′. Of course, if
X is finite dimensional, then X ′ is of the same dimension as that of
X, and X ′ is linearly homeomorphic with X.

In the following we give some representations of dual spaces of
certain sequence spaces.
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2.3.1 Dual of some sequence spaces

First, let us consider the sequence space c00 with norms ‖ · ‖p for
1 ≤ p ≤ ∞.

Theorem 2.3.1 Let Xp = c00 with ‖ · ‖p for 1 ≤ p ≤ ∞ and let q be
the conjugate exponent of p. Then for every f ∈ X ′p, there exists a
unique uf ∈ `q such that

f(x) =

∞∑
i=1

x(i)uf (i) ∀x ∈ Xp,

and the map f 7→ uf is a surjective isometry. In particular, X ′p is
linearly isometric with `q,

Proof. Let f ∈ X ′p, u := (f(e1), f(e2), . . .) and x ∈ Xp. Since
{e1, e2, . . .} is a basis of Xp, we have

f(x) =
∞∑
i=1

x(i)f(ei) =
∞∑
i=1

x(i)u(i).

First we show that u ∈ `q and ‖u‖q ≤ ‖f‖.
Note that

|u(i)| = |f(ei)| ≤ ‖f‖ ∀ i ∈ N.

Hence, u ∈ `∞ and ‖u‖∞ ≤ ‖f‖. Thus, for p = 1, we have u ∈ `q
and ‖u‖q ≤ ‖f‖, where q =∞. Next, let 1 < p ≤ ∞ and for n ∈ N,
let

xn(i) =

{
|u(i)|q/u(i), u(i) 6= 0, i ≤ n,
0, otherwise.

Then, we have xn ∈ c00 and

n∑
i=1

|u(i)|q = |f(xn)| ≤ ‖f‖ ‖xn‖p.

If p =∞, then q = 1 and ‖xn‖∞ ≤ 1 so that in this case, u ∈ `1 and
‖u‖1 ≤ ‖f‖. So, let 1 < p <∞. Then, using the fact that pq−p = q,
we have

‖xn‖pp =

n∑
i=1

|xn(i)|p =

n∑
i=1

|u(i)|q.
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Therefore,

n∑
i=1

|u(i)|q = |f(xn)| ≤ ‖f‖ ‖xn‖p = ‖f‖
( n∑
i=1

|u(i)|q
)1/p

so that( n∑
i=1

|u(i)|q
)1/q

≤ ‖f‖; equivalently,

n∑
i=1

|u(i)|q ≤ ‖f‖q.

Hence, u ∈ `q and ‖u‖q ≤ ‖f‖. By Hölder’s inequality, we also have

|f(x)| ≤ ‖x‖p‖u‖q.

Thus, we have proved that u ∈ `q and ‖u‖q = ‖f‖.
For f ∈ X ′p, let the element u ∈ `q defined above be denoted by

uf . We have already shown that the function T : X ′p → `q defined
by T (f) = uf is an isometry. It can be easily seen that it is linear
as well. Now, we show that T is onto. For this, let y ∈ `q, and let
f : Xp → K be defined by

f(x) =
∞∑
i=1

x(i)y(i), x ∈ Xp.

Then, by Hölder’s inequality, f ∈ X ′p and ‖f‖ ≤ ‖y‖q, and f(ei) =
y(i) for all i ∈ N. Hence, y = uf , i.e., T (f) = y.

Next, we show that the dual of `p can be identified with `q for
the case 1 ≤ p <∞. For this, first we observe the following lemma.

Lemma 2.3.2 Let X be a normed linear space and X0 be a dense
subspace of X. If f0 : X0 → K is a continuous linear functional,
then there exists a unique continuous linear functional f : X → K
such that

f(x) = f0(x) ∀x ∈ X0 and ‖f‖ = ‖f0‖.

Proof. Let f0 : X0 → K be a continuous linear functional. For
x ∈ X, let (xn) in X0 be such that ‖xn − x‖ → 0 as n→∞. Then,
for every m,n ∈ N, we have

|f0(xn)− f0(xm)| ≤ ‖f0‖ ‖xn − xm‖.
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Hence (f0(xn)) is a Cauchy sequence in K. Define

f(x) := lim
n→∞

f0(xn), x ∈ X.

Then, it follows that f : X → K is linear and f(x) = f0(x) for all
x ∈ X0. Further,

|f(x)| = lim
n→∞

|f0(xn)| ≤ ‖f0‖ lim
n→∞

‖xn‖ = ‖f0‖ ‖x‖.

Hence, f ∈ X ′ and ‖f‖ ≤ ‖f0‖. Clearly, ‖f0‖ ≤ ‖f‖. Thus, existence
result is proved. For the uniqueness, suppose, there exists f̃ ∈ X ′

such that

f̃(x) = f0(x) ∀x ∈ X0 and ‖f̃‖ = ‖f0‖.

Then, for x ∈ X, taking (xn) in X0 such that ‖xn − x‖ → 0 as
n→∞, we have

f̃(x) = lim
n→∞

f̃(xn) = lim
n→∞

f0(xn) = f(x).

Thus, f̃ = f .

Theorem 2.3.3 Let 1 ≤ p < ∞. Then, for every f ∈ (`p)′, there
exists a unique uf ∈ `q such that

f(x) =
∞∑
i=1

x(i)uf (i) ∀x ∈ `p,

and the map f 7→ uf is a surjective linear isometry from (`p)′ to `q.

Proof. For 1 ≤ p < ∞, let Xp = c00 with the norm ‖ · ‖p. Let
f ∈ (`p)′ and g : Xp → K be defined by

g(x) = f(x) ∀x ∈ Xp.

Note that g ∈ X ′p. By Theorem 2.3.1, there exists a unique u ∈ `q
such that

g(x) =

∞∑
i=1

x(i)u(i) ∀x ∈ Xp,

and ‖g‖ = ‖u‖q. Since c00 is dense in `p for 1 ≤ p <∞ (see Example
1.3.2), by Lemma 2.3.2, f is the unique extension of g such that
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‖f‖ = ‖g‖ so that we also have ‖f‖ = ‖u‖. Further, for x ∈ `p, let
(xn) be in c00 such that ‖x− xn‖p → 0 as n→∞. Then, we have

f(x) = lim
n→∞

f(xn) = lim
n→∞

g(xn) = lim
n→∞

n∑
i=1

x(i)u(i) =
∞∑
i=1

x(i)u(i).

Clearly, f(ei) = u(i) for all i ∈ N. From this, uniqueness of u also
follows. To see the surjectivity of the map f 7→ uf := u, let y ∈ `q.
Define f : `p → K by

f(x) =

∞∑
i=1

x(i)y(i) ∀x ∈ `p.

Then, by Hölder’s inequality, f ∈ (`p)′. By the argument as in the
beginning of this proof, we see that ‖f‖ = ‖y‖q and uf = y. This
completes the proof.

Theorem 2.3.4 Let X = c0 with ‖ · ‖∞. Then, for every f ∈ X ′,
there exists a unique uf ∈ `1 such that

f(x) =
∞∑
i=1

x(i)uf (i) ∀x ∈ c0,

and the map f 7→ uf is a surjective linear isometry from X ′ to `1.

Proof. We observe that c00 is dense in c0 with respect to the
norm ‖ · ‖∞. Hence, the proof follows using the arguments as in the
proof of Theorem 2.3.3 by replacing `p by X and `q by `1.

Remark 2.3.1 It can also be shown that the dual of c (the space
of convergent scalar sequences with respect to the norm ‖ · ‖∞) is
linearly isometric with `1 (cf. Nair [5]). ♦

2.3.2 Dual of some function spaces

Now, we consider dual of the space C[a, b] with ‖·‖∞ and of the space
Lp[a, b] for 1 ≤ p < ∞. We shall state the main theorems without
proofs. Interested readers may see the proofs in Nair [5]. However,
we provide here all necessary details required for their statements.

Recall from Remark 1.3.2 that Lp[a, b] for 1 ≤ p < ∞ is the
linear space of all measurable functions x : [a, b] → K such that∫ b

a
|x(t)|pdm(t) < ∞, where m(·) is the Lebesgue measure on [a, b].
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The set L∞[a, b] is the set of all essentially bounded functions on
[a, b], that is, x : [a, b] → K belongs to L∞[a, b] if and only if it is
measurable and there exists M > 0 such that |x(t)| ≤M for almost
all (a.a) t ∈ [a, b]. In fact, we do not distinguish functions in Lp[a, b]
which are equal almost every where on [a, b]. Thus, for functions
x, y ∈ Lp[a, b], we write

x = y ⇐⇒ x(t) = y(t) a.a. t ∈ [a, b].

For x ∈ Lp[a, b] with 1 ≤ p ≤ ∞, let

‖x‖p :=

{ (∫ b
a |x|

pdµ
)1/p

, 1 ≤ p <∞,
inf{M > 0 : |x(t)| ≤M a.a. t ∈ [a, b]}, p =∞.

It is known (cf. Nair [5] or Rudin [10]) that

• Lp[a, b] is a linear space and

• the map x 7→ ‖x‖p is a complete norm on Lp[a, b].

Definition 2.3.1 A function v : [a, b]→ K is said to be a function
of bounded variation on [a, b] if there exists M > 0 such that for
every partition a = t0 < t1 < . . . < tn = b of [a, b], we have

n∑
i=1

|v(ti)− v(ti−1)| ≤M.

♦

• The set BV [a, b] of all functions of bounded variation on [a, b]
is a linear space,

• The function v 7→ ‖v‖ := |v(a)| + sup
∑n

i=1 |v(ti) − v(ti−1)|
is a norm on BV [a, b], where the supremum is taken over all
partitions of [a, b], and

• BV [a, b] is a Banach space with respect to the above norm.

Further, it is known (See Royden [8]) that every real valued function
of bounded variation is a difference of two monotonically increasing
functions. Thus, we can define Riemann-Stieltjes integral of a con-
tinuous function with respect to a function in BV [a, b] in a natural
way.
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Definition 2.3.2 A function v ∈ BV [a, b] is said to be a normal-
ized function of bounded variation if v(a) = 0 and if it is right
continuous at every point in [a, b], i.e., for every t ∈ [a, b], lim

δ→0
v(t+δ)

exists and it is equal to v(t). ♦

• The set NBV [a, b] of all normalized functions of bounded vari-
ation on [a, b] is a closed subspace of BV [a, b].

Thus, NBV [a, b] is a Banach space with respect to the norm

v 7→ ‖v‖ := sup
n∑
i=1

|v(ti)− v(ti−1)|.

Now, we can state the main theorems of this subsection.

Theorem 2.3.5 For each y ∈ NBV [a, b], let

fy(x) :=

∫ b

a
x(t)dy(t), x ∈ C[a, b].

Then fy is a continuous linear functional on C[a, b] (with respect to
‖ · ‖∞)) and y 7→ fy is a surjective linear isometry from NBV [a, b]
onto the dual of C[a, b].

Theorem 2.3.6 Let 1 ≤ p <∞ and q > 0 be the conugate exponent
of p. For each y ∈ Lq[a, b], let

fy(x) :=

∫ b

a
x(t)y(t) dm(t), x ∈ Lp[a, b].

Then fy is a continuous linear functional on Lp[a, b] and the the map
y 7→ fy is a surjective linear isometry from Lq[a, b] onto the dual of
Lp[a, b].

2.4 Compact Operators

Definition 2.4.1 Let A : X → Y be a linear operator between
normed linear spaces X and Y . We say that A is a finite rank
operator if

dimR(A) <∞.

A linear operator A : X → Y is said to be of infinite rank if it is
not of finite rank. ♦
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If A : X → Y is of finite rank, then we write

rank (A) = dimR(A).

Finite rank operators appear naturally in applications in the form
of approximation of operators of infinite rank.

Let us illustrate the approximation procedure by one example.

Example 2.4.1 Let X and Y be Hilbert spaces, (un) and (vn) be
orthonormal sets in X and Y , respectively, and let (µn) be a bounded
sequence of scalars. Define A : X → Y by

Ax =
∞∑
j=1

µj〈x, uj〉vj , x ∈ X.

We have seen in Example 2.1.9 thatA ∈ B(X) and ‖A‖ = supj∈N |µj |.
Now, for each n ∈ N, let An : X → Y be defined by

Anx =
n∑
j=1

µj〈x, uj〉vj , x ∈ X.

Then we have

‖(A−An)x‖2 =
∞∑

j=n+1

|µj |2|〈x, un〉|2 ≤ max
j>n
|µj |2‖x‖2 ∀x ∈ X.

Hence,

‖A−An‖ ≤ max
j>n
|µj |

so that if µn → 0 as n → ∞, we obtain ‖A − An‖ → 0 as n → ∞.
Note that A is an infinite rank operator, whereas rank (An) ≤ n for
every n ∈ N. �

Remark 2.4.1 Example 2.4.1 shows that the limit of a sequence of
finite rank operators in B(X,Y ) need not be of finite rank. ♦

One of the important property of a finite rank operator is that
image of the closed unit ball is relatively compact. This property is
shared by a large class of operators. Recall from real analysis that
a subset of a metric space is said to be relatively compat if its
closure is compact.
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Definition 2.4.2 Let X and Y be normed linear spaces. Then a
linear operator A : X → Y is said to be a compact operator if
{Ax : ‖x‖ ≤ 1} is relatively compact. ♦

Notation 2.4.1 We denote the set of all compact operators from X
to Y by K(X,Y ), and also we denote K(X,X) by K(X) ♦

Clearly,
K(X,Y ) ⊆ B(X,Y ).

Theorem 2.4.1 The following hold.

(ii) Every bounded finite rank operator is compact.

(iii) The identity operator on a normed linear space is compact if
and only if the space is finite dimensional.

Proof. Let X and Y be normed linear spaces.
(i) Let A : X → Y be a bounded operator of finite rank. Then

cl {Ax : ‖x‖ ≤ 1} is a closed and bounded subset of the finite dimen-
sional space Y0 := R(A), so that cl {Ax : ‖x‖ ≤ 1} is compact in Y0,
and hence compact in Y as well.

(ii) This follows from the fact that the closed unit ball {x ∈ X :
‖x‖ ≤ 1} is compact if and only if the space X is finite dimensional
(cf. Theorem 1.3.7).

The following proposition is a consequence of the fact that a sub-
set S of a metric space Ω is compact if and only if every sequence in
S has a subsequence which converges in S.

Proposition 2.4.2 Let X and Y be normed linear spaces. A linear
operator A : X → Y is compact if and only if for every bounded se-
quence (xn) in X, the sequence (Axn) has a convergent subsequence.

Theorem 2.4.3 Let X and Y be normed linear spaces.

(i) K(X,Y ) is a subspace of B(X,Y ).

(i) If Y is a Banach space, then K(X,Y ) is closed in B(X,Y ).

Proof. (i) Let A and B be in K(X,Y ) and α ∈ K. Let (xn) be a
bounded sequence in X. In view of Proposition 2.4.2, it is enough to
show that the sequence ((A+αB)xn) has a convergent subsequence.
Since A and B are compact, by Proposition 2.4.2, there exists a
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subsequence (x′n) for (xn) and a subsequence (x′′n) for (x′n) such that
(Ax′n) and (Bx′′n) converge, say to y and z respectively. Hence,

Ax′′n + αBx′′n → z + αz as n→∞.

(ii) Suppose Y be a Banach space. Let (An) be a sequence in
K(X,Y ) such that ‖An − A‖ → 0 as n→∞ for some A ∈ B(X,Y ).
We have to show that A ∈ K(X,Y ). Again, let (xn) be a bounded
sequence in X, say ‖xn‖ ≤ c for all n ∈ N. In view of Proposition
2.4.2, it is enough to show that the sequence (Axn) has a convergent
subsequence. Since Y is complete, it enough to show that (Axn) has
a Cauchy subsequence.

Since each Ak is compact, there exists a subsequence (x
(k)
n ) for

(xn) such that (Akx
(k)
n ) converges. Without loss of generality, we may

assume that (x
(k+1)
n ) is a subsequence of (x

(k)
n ) for each k ∈ N. Note

that, for each k ∈ N, (x
(k+n)
k+n ) is a subsequence of (x

(k)
k+n). Hence,

(Akx
(n)
n ) converges for each k ∈ N. Now, let ε > 0 and let k ∈ N be

such that ‖A−Ak‖ < ε. Corresponding to this k, let N ∈ N be such
that

‖Akx(n)
n −Akx(m)

m ‖ < ε ∀n,m ≥ N.

Then, for all n,m ≥ N , we have

‖Ax(n)
n −Ax(m)

m ‖ ≤ ‖(A−Ak)x(n)
n ‖+ ‖(Akx(n)

n −Akx(m)
m ‖

+‖(Ak −A)x(n)
n ‖

≤ cε+ ε+ cε

= (2c+ 1)ε.

Thus, (Ax
(n)
n ) is a Cauchy subsequence of (Axn).

Remark 2.4.2 We shall see in Chapter 4 that if X and Y are Hilbert
spaces, then every operator in K(X,Y ) can be approximated by a
sequence of finite rank operators in B(X,Y ). ♦

2.4.1 Examples of compact operators

Example 2.4.2 By Theorem 2.4.3 the operator A in Example 2.4.1
is a compact operator. �
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Example 2.4.3 Let (λn) be a sequence of scalars which converges
to 0, and A : `p → `p be defined by

(Ax)(i) = λix(i), i ∈ N.

For n ∈ N, let An : `p → `p be defined by

(Anx)(i) =

{
λix(i), i ≤ n,
0, i > n.

Then we see that

‖(A−An)x‖p ≤ sup
j>n
|λj |‖x‖p ∀x ∈ `p

so that

‖A−An‖ ≤ sup
j>n
|λj | → 0 as n→∞.

Note that each An is a finite rank bounded operator so that An is
a compact operator, and hence by Theorem 2.4.3, A is a compact
operator.

Note that, for p = 2, this example is a particular case of Example
2.4.2. �

For the next few examples we shall make use of Arzela-Ascoli
theorem.

Theorem 2.4.4 (Arzela-Ascoli theorem) A subset S of C[a, b]
is relatively compact if and only if S is pointwise bounded and equi-
continuous.

In stating the above theorem we used the following definitions:
Let S be a set of K-valued functions defined on metric space Ω.

1. S is pointwise bounded if for each t ∈ Ω, there exists Mt > 0
such that

|f(t)| ≤Mt ∀ f ∈ S.

2. S is equi-continuous if for every ε > 0, there exists δ > 0 such
that

s, t ∈ Ω, |s− t| < δ =⇒ |f(s)− f(t)| < ε ∀ f ∈ S.
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Example 2.4.4 (i) For x ∈ C[a, b], define

(Ax)(s) =

∫ s

a
x(t) dt.

We have already seen that A : C[a, b] → C[a, b] is a bounded linear
operator with respect to the norm ‖ · ‖∞. Further, since

|(Ax)(s)− (Ax)(τ)| ≤
∫ s

τ
|x(t)| dt ≤ ‖x‖∞|s− τ |

for every x ∈ C[a, b] and for every s, τ ∈ [a, b], it follows that the set

S := {Ax : ‖x‖∞ ≤ 1}

is bounded and equi-continuous in C[a, b]. Hence, by Arzela-Ascoli’s
theorem, S is relatively compact. Hence A is a compact operator.

(ii) Let X = L2[a, b] and

(Ax)(s) =

∫ s

a
x(t) dt, x ∈ L2[a, b].

Note that, for s, τ ∈ [a, b] with s, τ , and x ∈ L2[a, b], we have, Ax ∈
C[a, b] and

|(Ax)(s)− (Ax)(τ)| ≤
∫ τ

s
|x(t)| dt ≤ (τ − s)1/2‖x‖2.

Hence, it follows that

S := {Ax : ‖x‖2 ≤ 1}

is bounded and equi-continuous in C[a, b], and hence, by Arzela-
Ascoli’s theorem, it is relatively compact in C[a, b] with respect to
‖ · ‖∞. Therefore, using the fact that

‖y‖2 ≤
√
b− a ‖y‖∞ ∀ y ∈ C[a, b],

S is relatively compact in L2[a, b]. Thus, A : L2[a, b] → L2[a, b] is a
compact operator. �

Example 2.4.5 Let k(·, ·) be a continuous function defined on
[a, b]× [c, d]. For x ∈ L1[a, b], let

(Ax)(s) =

∫ b

a
k(s, t)x(t) dµ(t), s ∈ [c, d].
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It can seen easily that Ax ∈ C[c, d] for all x ∈ L1[a, b]. We show
that A : L1[a, b]→ C[c, d] is a compact operator with respect to the
norms ‖ · ‖1 and ‖ · ‖∞ on L1[a, b] and C[c, d] respectively.

Observe that for x ∈ L1[a, b] and s, τ ∈ [c, d],

(Ax)(s)− (Ax)(τ) =

∫ b

a
[k(s, t)− k(τ, t)]x(t) dµ(t)

so that

|(Ax)(s)− (Ax)(τ)| ≤
(

sup
t∈[a,b]

|k(s, t)− k(τ, t)|
)
‖x‖1.

From this, it follows that Ax ∈ C[c, d] for every x ∈ C[c, d] and

{Ax : x ∈ L1[a, b], ‖x‖1 ≤ 1}

is bounded and equi-continuous in C[c, d]. Therefore, the operator
A : L1[a, b]→ C[c, d] is compact with respect to the norms ‖ ·‖1 and
‖ · ‖∞ on L1[a, b] and C[c, d] respectively. �

2.4.2 Examples of non-compact operators

Example 2.4.6 (i) Consider the right-shift operator

A : (α1, α2, . . .) 7→ (0, α1, α2, . . .)

from `p to `r, where p, r ∈ [1,∞].

Note that the sequence (en), where en = (δ1n, δ2n, . . .), is bounded
in `p, but its image (Aen) does not have a convergent subsequence.
Indeed, for n 6= m,

‖Aen −Aem‖r = ‖en+1 − em+1‖r =

{
1, r =∞
21/r, r 6=∞.

Thus, A is not a compact operator.

(ii) Following the arguments as in (i) above, it can be seen that
the left-shift operator

A : (α1, α2, . . .) 7→ (α2, α3, . . .)

from `p to `r, where p, r ∈ [1,∞], is not a compact operator. �
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Example 2.4.7 Let (λn) be a sequence of scalars which converges
to a nonzero scalar λ, and A : `p → `p be defined as in Example
2.4.3, i.e.,

(Ax)(i) = λix(i), i ∈ N.

Note that, Aen = λnen for all n ∈ N so that for n 6= m,

‖Aen −Aem‖p = ‖λnen − λmem‖p
≥ ‖λn(en − em)‖p − ‖(λn − λm)em‖p
= cp|λn| − |λn − λm|,

where

cp :=

{
1, p =∞
21/p, p 6=∞.

Since λn → λ 6= 0, there exists N ∈ N such that

|λn| ≥ |λ|/2 and |λn − λm| < cp|λ|/4 ∀n,m ≥ N.

Then we have

‖Aen −Aem‖p ≥ cp|λ|/4 ∀n,m ≥ N

so that (Aen) does not have a convergent subsequence. Consequently,
A is not a compact operator. �

2.5 Problems

1. Let X, Y be normed linear spaces and A : X → Y be a linear
operator. Then show that the following are equivalent:

(a) A is continuous

(b) For every bounded subset S of X, the set A(S) is bounded
in Y .

(c) The set {‖Ax‖ : ||x‖ < 1} is bounded.

2. Prove that for A ∈ B(X,Y ), the quantities

αA := sup{‖Ax‖ : ‖x‖ ≤ 1},

βA := sup{‖Ax‖ : ‖x‖ = 1},

γA := sup
{‖Ax‖
‖x‖

: x 6= 0
}

are finite and are equal to ‖A‖.
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3. If T : X → Y is a linear operator such that there exists c > 0
and x0 6= 0 in X satisfying ‖Tx‖ ≤ c‖x‖ for all x ∈ X and
‖Tx0‖ = c‖x0‖, then show that T ∈ B(X,Y ) and ‖T‖ = c.

4. Let X be an inner product space and u ∈ X. Prove that, for
every u ∈ X, fu : X → K defined by fu(x) = 〈x, u〉, x ∈ X,
belongs to X ′ and ‖fu‖ = ‖u‖.

5. Let Xp = c00 be with p-norm for 1 ≤ p ≤ ∞ and A : X → X
be defined by

(Ax)(j) = jx(j), x ∈ c00.

Show that A is an unbounded linear operator.

6. For 1 ≤ p <∞, , let X = {x ∈ `p :
∑∞

j=1 j
p|x(j)|p <∞} with

‖ · ‖p and A : X → `p be defined by

(Ax)(j) = jx(j), x ∈ X.

Show that A is an unbounded linear operator.

7. Let k(·, ·) ∈ C([a, b]× [a, b]). For x ∈ C[a, b], let

(Ax)(s) =

∫ b

a
k(s, t)x(t)dt, s ∈ [a, b].

For 1 ≤ p ≤ ∞, if Xp := C[a, b] with ‖ · ‖p, then prove that
A ∈ B(Xp, Xr) for any p, r ∈ [1,∞]. Also, find an estimate for
‖A‖ for each p, r ∈ [1,∞].

8. Let X = Kn and Y = Km be with ‖ · ‖1 and let (aij) be an
m× n matrix over K. For x ∈ Kn, let Ax be defined by

(Ax)(i) =

n∑
j=1

aijx(j), i = 1, . . . ,m.

Show that ‖A‖ = max1≤j≤n
∑m

i=1 |aij |.

9. Let X = Kn and Y = Km be with ‖ · ‖∞ and let (aij) be an
m× n matrix over K. For x ∈ Kn, let Ax be defined by

(Ax)(i) =

n∑
j=1

aijx(j) i = 1, . . . ,m.

Show that ‖A‖ = max1≤i≤n
∑m

j=1 |aij |.
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10. Let X = `1 and let (aij) be an infinite matrix of scalars such
that α0 := supj∈N

∑∞
i=1 |aij | <∞. For x ∈ `1, let Ax be defined

by

(Ax)(i) =
∞∑
j=1

aijx(j), i ∈ N.

Show that A ∈ B(`1) and ‖A‖ = α0.

11. Let X = `∞ and let (aij) be an infinite matrix of scalars such
that β0 := supi∈N

∑∞
j=1 |aij | < ∞. For x ∈ `∞, let Ax be

defined by

(Ax)(i) =

∞∑
j=1

aijx(j), i ∈ N.

Show that A ∈ B(`∞) and ‖A‖ = β0.

12. Let (λn) be a bounded sequence of scalars, and for 1 ≤ p ≤ ∞,
let

Ax =

∞∑
n=1

λnx(n)en, x ∈ `p.

Show that A ∈ B(`p) and ‖A‖ = sup |λn|.

13. Show that for every f ∈ (`2)′, there exists a unique y ∈ `2 such
that f(x) =

∑∞
j=1 x(j)y(j) for all x ∈ `2.

14. Let X and Y be inner product spaces, and A ∈ B(X,Y ). Prove
that

(a) ‖x‖ = sup{|〈x, u〉| : u ∈ X, ‖u‖ = 1},
(b) ‖A‖ = sup{|〈Ax, y〉 : x ∈ X, y ∈ Y, ‖x‖ = 1 = ‖y‖}.

15. Let C[a, b] with ‖ · ‖∞. Prove that the inclusion operators

(a) from C[a, b]→ Lp[a, b] for any p ∈ [1,∞],

(b) from Lp[a, b]→ Lr[a, b] for any p, r ∈ [1,∞] with p ≥ r

are bounded operators.

16. Let X be a Hilbert space and A ∈ B(X) be such that there
exist γ > 0 satisfying

|〈Ax, x〉| ≥ γ‖x‖2 ∀x ∈ X.

Prove that R(A) is closed and R(A)⊥ = {0}.
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17. Let X be a Hilbert space and for f ∈ X ′, let uf ∈ X be the
unique element obtained as in Riesz representation theorem.
For f, g in X ′, let 〈f, g〉′ = 〈ug, uf 〉. Prove the following.

(a) 〈·, ·〉′ is an inner product on X ′,

(b) X ′ is a Hilbert space with respect to the inner product
〈·, ·〉′.

18. Prove the following

(a) Let X and Y be Hilbert spaces, and A,B ∈ B(X,Y ) and
α ∈ K. Then

(A∗)∗ = A, (A+ αB)∗ = A∗ + ᾱB∗.

(b) Let X,Y, Z be Hilbert spaces, and A ∈ B(X,Y ) and B ∈
B(Y, Z). Show that (BA)∗ = A∗B∗.

19. Let X0 be a dense subspace of a normed linear spaceX. Prove
that X ′0 and X ′ are linearly isometric.

20. Prove Proposition 2.4.2.

21. Let A be as in Example 2.4.1. Prove that, if A is a compact
operator, then 0 is the only limit point of {µn : n ∈ N}.

22. Let k(·, ·) ∈ C([a, b]× [a, b]) and let

(Ax)(s) =

∫ b

a
k(s, t)x(t)dt, x ∈ L1[a, b].

Prove that A as an operator

(a) from Lp[a, b]→ C[a, b] for any p ∈ [1,∞],

(b) from C[a, b]→ Lp[a, b] for any p ∈ [1,∞],

(c) from Lp[a, b]→ Lr[a, b] for any p, r ∈ [1,∞] with p ≥ r,

is a compact bounded operator.

(Hint: Use the fact that A : L1[a, b] → C[a, b] is a compact
operator and Problem 15.)

23. Prove that a projection operator on a Banach space is compact
if and only it is finite rank.


