3

Some Important Theorems

3.1 Closed Graph Theorem
We know that if A:z — Y is a continuous linear operator between
normed linear spaces X and Y, then for every sequence (z,) in X,

Ty > — Az, — Az.

In applications there are plenty of situations in which a linear op-
erator A may be defined only in a subspace Xy of a known space,
usually a Banach space. In such cases a sequence (x,) in Xy may
be convergent in X, but the limit need not be in Xy, but the image
sequence (Az,) can still converge. So, a natural question would be:

If A is a linear operator defined on a subspace Xg of a
normed linear space X with values in a normed linear
spaceY, and if (z,) is a sequence in X such that

Tp — 2 in X and Az, — v,

then do we have r € Xy and y = Azx?

In view of the question raised above, we have the following defi-
nition.

Definition 3.1.1 Let X and Y be normed linear spaces, Xy be a
subspace of X and A : Xg — Y be a linear operator. Then A is
called a closed operator if for every sequence (z,,) is in Xy,

Tp —xin X and Az, >y — 1z € Xpand y= Ax.

O

We now give a characterization of a closed operator in terms of
the closedness of the graph of the operator in a product space.

106



Closed Graph Theorem 107

Definition 3.1.2 Suppose X and Y are normed linear spaces. Then

1@yl == llzllx +llylly, (z,y) € X xY,

defines a norm on the product space X x Y, called the product
norm on X x Y, and X x Y with this product norm is called a
product space. O

Observe:
e For each p with 1 < p < o0,

(@, y)] = { (% + yllz)?, 1< p < oo,
max{||z|lx, [yly}, p= oo,

Now, the following characterization of a closed operator is imme-
diate.

Proposition 3.1.1 Let X and Y be normed linear spaces and X be
a subspace of X. A linear operator A : Xo — Y is a closed operator
if and only if its graph,

G(A) :={(x, Az) : x € Xo},
is a closed subset of the product space X XY .

Example 3.1.1 Let X =Y = Cla, b] with |- || and Xo = C'[a, b].
Then A : Xg — Y defined by

Az =2, ze€ Xy

is a closed operator: To see this, let (z,,) in Xy be such that
2 = @lloc =0 and |27, = ylloc — 0

for some z,y € C[a,b], i.e., (x,) converges to z uniformly and (/)
converges to y uniformly. Then, by a result in real analysis (see Rudin
[9]), we know that x is differentiable and 2’ = y. Thus, € Xy and
Ax =y. O

Example 3.1.2 Let X be an infinite dimensional Hilbert space
and Ey = {u, : n € N} be an orthonormal set in X. Let (\,) be a
sequence of scalars. Let

Xo = {x €X Y Pl un)? < oo}
n=1
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For xz € Xy, let
oo
Az = Z)\j<m,uj)uj.
j=1

By Riesz-Fischer theorem (Theorem 1.5.4), we see that Az € X for
every x € Xg, and A : Xo — X is a linear operator. We show that

A is a closed operator, and it is a bounded operator if
and only if (\,) is a bounded sequence.

Let (z,,) in X be such that
Tp = and Az, =y
for some (z,y) € X x X. Then, for each j € N,
(Tn,uj) = (x,uj) and  ANj(xp,uj) = (Az,, u;) — (Y, uj).
Thus,
Nz, uj) = (y,u;) VjeN.

Hence, x € Xy. Also, if Ey is an orthonormal basis of X, we obtain
Ax = y. Suppose Ej is not an orthonormal basis. Let E be an
orthonormal basis which contains Ey. Then for every u € E'\ Ey, we
have (Az,,u) = 0 so that (Az,,u) = 0 for all n € N and (y,u) =
lim (Az,,u) = 0. Thus,

n—o0

(Az,u) = (y,u) Yu € FE;

consequently, Ax = y. Thus, we have showed that A is a closed
operator.
Clearly, if ()\,) is bounded sequence with 3 := sup,,cy |An|, then

ST alPle,u)? < Bzl Ve e X,
j=1

so that Xg = X, A € B(X) and ||A|| < 8. Conversely, if A € B(X),
then we have

[An| = [[Antnll = [[Aun|| < [|A Vn €N

so that () is bounded. O
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The proof of the following theorem is easy and hence it is left as
exercise.

Theorem 3.1.2 Let X and Y be normed linear spaces, Xg be a
subspace of X and A : Xog — Y be a closed linear operator. Then the
following hold.

(i) N(A) is a closed subspace of X.
(ii) If A is injective, then A~ : R(A) — X is a closed operator.

Is every continuous linear operator a closed operator?

The answer, in general, is not affirmative. Indeed, if X is a
non-closed subspace of a normed linear space X then the inclusion
operator Iy : Xg — X defined by

Ipr=x Vaxe X,

is a continuous linear operator, which is not a closed operator. One
may also look at the following example which the reader must have
seen in real analysis.

Example 3.1.3 Let Xy = R]a, b], the space (over R) of all Riemann
integrable functions on [a,b], X = L'[a,b], Y =R, and A: Xy —» Y
be defined by

b
(Az)(s) = / s(t)dt, € Xo.

Let {r1,r2,...} be an enumeration of rational numbers in [a,b] and
for n € N, let x,, : [a,b] — R be defined by

(o, te{ry,...,m}
-Tn(t)_{ 1, tg{ri,...,’l“n}

Then, it can be seen easily that x, € Rla,b] and x,, — z in L'[a, b],
where z : [a,b] — R is defined by

0, teQ,
x(t)_{L t Q.

Also, we have

b
/ Tp(t)dt=b—a VneN
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Thus,
Ty, w2 € X and Ar, -y :=b—aq;

but z € Xj. O

Theorem 3.1.3 Let X and Y be normed linear spaces, Xg be a
subspace of X and A : Xg — Y be a continuous linear operator.

(i) If Xo is a closed subspace, then A is a closed operator.

(i) If Y is a Banach space and A is a closed operator, then X is
closed in X.

Proof. (i) Let (z,) be a sequence in Xy such that x,, — x and
Az, — y for some x € X and y € Y. If Xg is closed in X, then
x € X, so that, by continuity of A, we obtain Az, — Ax.

(ii) Suppose Y is a Banach space and A is a closed operator. Let
(z5,) be a sequence in Xy such that z, — x. By continuity of A,
we see that (Az,) is a Cauchy sequence in Y. Since Y is complete,
there exists y € Y such that Az, — y. Now, by the closedness of A,
z € Xop. |

The following example illustrates how Theorem 3.1.2(ii) and The-
orem 3.1.3 (ii) can also be used to show certain operator is a closed
operator.

Example 3.1.4 Let X be an infinite dimensional separable Hilbert
space and {u, : n € N} be an orthonormal basis of X. Let (A,) be
a sequence of nonzero scalars such that

d = inf |\,| > 0.
neN

Let A be as in Example 3.1.2. Since {u, : n € N} is an orthonormal
basis, it follows that, for z € X,

Ar=0=z=0

so that A is one-one. Further, for every y € X,

Z [y un)® _ llyll?
|A ‘2 - d2

so the the series
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converges. Hence, = := 22021 <y5\u”>un satisfies the equation Az = y.

In other words, A is onto as well. Note that

2 [y un)? _ llyll?
1A~y Z WS e Yrex

Thus, A~! is continuous with closed domain, the whole of X. By
Theorem 3.1.3 (i), A~! is a closed operator, and hence, by Theorem
3.1.2(ii), A is a closed operator. O

In view of Theorem 3.1.3, a question naturally arises is the follow-
ing: When is a closed operator continuous? Theorem 2.1.6, together
with Theorem 3.1.2(i), shows that every closed linear functional is
continuous.

What about if dim (Y) > 1? Closed graph theorem gives an an-
swer.

Theorem 3.1.4 (Closed graph theorem) Let X and Y be Ba-
nach spaces and A : X =Y be a closed operator. Then A is contin-
UOuS.

Proof. In order to show that A is continuous, it is enough to show
(Why?) that there exists ¢ > 0 such that

By C{x e X :|Az| < ¢},
where By = {z € X : ||z|| < 1}. For a > 0, let
Vo :i={z € X :|Az| < a}.

Then we have X = u;;lvj. Since X is complete, by the Baire
category theorem (Theorem 1.3.8), there is some k € N such that
the interior of cl (V%) is nonempty. Thus, there is some z¢p € X and
r > 0 such that B(zo,r) C cl(Vg). Then it can be seen (Verify!)
that By C cl (Vo). We show that

BO - Vv2k/r (*)

Let us denote Vyy /. by W. Let z € By and 0 < € < 1. Since
By C clW, there exists 1 € W such that ||z — z1]| < . Hence,
e~ 1(x — x1) € By. By the same argument, there exists x5 € W such
that ||e (2 — z1) — 22| <&, ie.,

|z — (z1 + exa)|| < €2.
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Continuing this argument, we obtain a sequence (x,) in W with

Hx —(x1 +exo+ a3+ + E"flxn)H <e”
for every positive integer n. In particular, taking s, := Z;l:l = _la:j,
n € N, the sequence (s,) converges to x. Recall that x; € W implies
|Az;|| < 2k/r. Hence, for n > m, we have

n n

. 2k i
sy — Asnll € 30 & Az <=5 30 &
j=m+1 Jj=m+1

Thus, (Asy) is a Cauchy sequence in Y. Since Y is also a Banach
space, the sequence (As,) converges to some y € Y. Since A is a
closed operator, we have y = Ax = lim,, . As,. Note that

oL 2% o 2k
[Asall <> Azyl < Y < ———.
= T r(l—e)

Hence,

2k
[Az|| = lim [As,| <
n—oo r

o)
This is true for all € > 0. Hence, ||Az|| < 2k/r. Thus, (%) is proved,
which completes the proof. 1

The following corollary, which is also called closed graph theorem,
can be deduced from Theorem 3.1.3 and Theorem 3.1.4.

Corollary 3.1.5 (Closed graph theorem) Let X and Y be Ba-
nach spaces and Xo be a subspace of X. Then a closed operator
A: Xg— Y is continuous if and only if Xo is closed in X.

Here is an application of Theorem 3.1.4.

Theorem 3.1.6 Let X be a Hilbert space and A : X — X be a self
adjoint operator. Then A € B(X).

Proof. By closed graph theorem, it is enough to prove that A is
a closed operator. So, let (z,) in X be such

p, > 2 and Ax, =y
for some z,y € X. Using the property of A, we have

(Axp,u) = (xp, Au) Yu e X.
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Hence, taking limit as n — oo, and again using the property of A,
we obtain

(y,u) = (x, Au) = (Az,u) VYueX.
Hence, y = Az. This proves that A is a closed operator. I

Now we give examples to show that completeness assumption in
Closed Graph Theorem cannot be dropped.

Example 3.1.5 Let X = C'[0,1] and Y = C[0, 1], both with || - ||0c
and Xg = X. Let A: Xg — Y be defined by

Ax =12, € X.
As in Example 3.1.1, we see that A is a closed operator. We have
seen in Example 2.1.7 that A is not a continuous operator. Note that
X is not a Banach space. [l

Example 3.1.6 Let X be an infinite dimensional Banach space
and E := {uy : A € A} be a basis of X with |luy| =1 for all A € A.
Then F is an uncountable set (Why?). Since E is a basis of X, every
r € X can be written as = Y., #(A)uy, where Z()) are scalars
such that z(\) = 0 for all but a finite number of \’s. Define

Izl o= > [2(N), =€ X.
AEA

Then it can be seen easily that || - ||« is also a norm on X and
el < flzfl« Ve X,

We first show that || - ||« is not complete.
Consider a sequence (\,,) of distinct elements from A. For each
n € N, let

n
UM
=17
Then, for every n,m € N with n > m, we have

n

1
[@n = &m|[« = Z TR

j=m+1 J

Hence, (x5) is a Cauchy sequence with respect to the norm || - [|«.
We claim that (z,,) does not converge with respect to | - [|«. On the
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contrary, suppose there exists z € X such that ||z — 2|« — 0 as
n — oo. Then we have

lz —@alls := Y 12(N) —2a(A)] 2

A€A

1
#(\) — ;‘ Vj e N.

Since ||z — x|« — 0, it follows that &(\;) = 1/j for all j € N, which
is not possible. Thus, (z,,) is not convergent with respect to || - ||«.

Next, let X, be the linear space X with || - |[«. Then the identity
operator I : X — X, is a closed operator. But, it is not continuous,
because, if it is is continuous, then there would exist ¢ > 0 such
that ||z||. < ¢||z|| for all z € X, which would imply that the norms
| - || and || - ||« are equivalent; a contradiction to the fact that || - || is
complete and || - ||« is not complete. O

Now, let us derive some important consequences of closed graph
theorem.

3.1.1 Bounded inverse theorem

Theorem 3.1.7 (Bounded inverse theorem) Suppose X and Y
are Banach spaces, Xg is a subspace of X and A : Xog — Y is a
closed operator. Suppose A is injective. Then A~': R(A) — X is
continuous if and only if R(A) is closed.

Proof. Suppose A is injective. By Theorem 3.1.2; the operator
A7l . R(A) — X is a closed operator. Hence, by Corollary 3.1.5,
A7l R(A) — X is continuous if and only if R(A) is closed. |

The proof of the following corollary, which is also known as bounded
inverse theorem, is immediate from Theorem 3.1.7.

Corollary 3.1.8 (Bounded inverse theorem) Suppose X andY
are Banach spaces and A € B(X,Y). If A is bijective, then A™' :
Y — X is a bounded operator.

Here is another consequence of Theorem 3.1.7.

Corollary 3.1.9 Suppose || - ||1 and || - ||2 are complete norms on
a normed linear space X such that one of them is stronger than the
other. Then they are equivalent.

Proof. Suppose || - ||1 is stronger than || - ||2, that is, there exists
¢ > 0 such that
lzll2 < cljz]i Ve X.
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Let X7 and X5 be the space X with norms || - ||; and || - ||2, respec-
tively. By the above inequality, the identity map from X7 to X» is
continuous. Since this map is bijective, and since X7 and X5 are Ba-
nach spaces, by Corollary 3.1.8, its inverse is also continuous. Hence,
there exists ¢/ > 0 such that

lz|ly < dlz]ls Vze X.
Thus, || - |1 and || - ||2 are equivalent. 1
For the next theorem we shall make use of the following lemma.
Lemma 3.1.10 Let X, Y be normed linear spaces and A € B(X,Y).
Then A : X/N(A) — Y defined by
Alzx] = Az, [z] € X/N(A),
is an injective bounded linear operator with | A| = ||A||. Further,
AeK(X,Y)= Aec K(X/N(A),Y).
Proof. Note that for every x € X,
IA[]]| = Az — w)|| < |} |z = ull, u € N(A).
Hence,
IA[]]l < || Alldist(z, N(4)) = Al |[2]] V2 e X.

so that A is a bounded linear operator and ||A| < ||A||. Also, for
every ¢ € X,

12| = | Af]ll < ANl [[l2]]] < 1Al ]l

Hence, [|A[| < [|A]|. Thus, [|A]| = [|Al|
Next, assume that A € I(X,Y). Let (&,) be a bounded sequence
in X/N(A), so that there exists M > 0 such that ||&,| < M for every
n € N. Thus,
dist (zp, N(A)) <M VneN,

where £, = [z,], n € N. Hence, there exists a sequence (uy) in N(A)
such that ||z, —u,|| < 2M for all n € N. In particular, (z, —u,) is a
bounded sequence in X. Since A(z,, — u,) = Az, for all n € N and
A is a compact operator, (Ax,) has a convergent subsequence. But,
A¢,, = Az, for all n € N. Thus, we have proved that A is a compact
operator. |
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Theorem 3.1.11 Let X and Y be Banach spaces and A € K(X,Y).
Then R(A) is closed if and only if rank (A) < co.

Proof. Suppose Yy := R(A) is closed. Let A : X/N(A) — Yy be
defined by
Alz] = Az, =z € X.

By Lemma 3.1.10, A is a bijective compact operator. Hence, by
Theorem 3.1.8, inverse of A is a bounded operator. Therefore, the
identity operator on X/N(A) is a compact operator, as it is a com-
position of a bounded operator with a compact operator. Hence,
by Theorem 1.3.4, X/N(A) is finite dimensional; consequently, Y is
finite dimensional. 1

3.1.2 Open mapping theorem

Recall that a function from a metric space to another metric space
is said to be an open map if image of every open set is open. In the
case of bounded linear operators between Banach spaces we have a
nice characterization of open maps. First we prove the following.

Lemma 3.1.12 Let X be a normed linear space and Xg be a closed
subspace of X. Let n: X — X/Xo be the quotient map, i.e.,

nz)=z+Xg VrelX.
Then n is linear, continuous, onto and open.
Proof. Clearly, 7 is linear and onto . Note that
In(@)ll = dist(x, Xo) < llz]| ¥z € X,

Hence, 7n is continuous. To show that it is open, let G be an open
subset of X. We have to show that n(G) is open in X/Xj. For this,
it is enough to show that for every = € G, there exists r > 0 such
that

yeX, [(z+Xo)—(y+Xo)| <r=y+Xo€n(G)
So, let x € G. Since G is open, there exists r > 0 such that
yeX, [r-yl<r=yed.

Now, let y € X be such that ||(z + Xo) — (y + Xo)|| < 7. Then there
exists u € Xo such that ||z —y+u|| <r. Then y —u € G, and hence
y+Xo=y—u+ Xo GW(G). |
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Theorem 3.1.13 (Open mapping theorem) Suppose X and Y
are Banach spaces and A : X — Y is a bounded linear operator.
Then A is an open map if and only if it is onto.

Proof. Suppose A is an open map, i.e., A maps every open subset
of X onto an open subset of Y. In particular, R(A), the image of
the open set X is a nonempty open subset of Y. By Theorem 1.3.9,
this is possible only if R(A) =Y, i.e., A is onto.

Conversely, suppose that A is onto. Then the linear operator
A:X/N(A) - Y defined by

Alx] = Az, [z] € X/N(A),

is a bijective bounded linear operator between Banach spaces X /N (A)
and Y (cf. Lemma 3.1.10). Hence, by Bounded Inverse Theorem, in-
verse of A is also continuous. In particular, A is an open map. Since

A:nog,

where n: X — X/N(A) is the quotient map as in Lemma 3.1.12, we
obtain that A is also an open map. |

3.1.3 Uniform boundedness principle

From analysis we know that if a sequence (f,,) of real valued contin-
uous functions defined on a metric space €2 converges uniformly to
a function f : Q@ — R, then f is also continuous. However, if the
uniform convergence is replaced by pointwise convergence, i.e.,

fo(x) = f(x) as n—oo foreach xz€Q,

then the function f need not be continuous. This is the case even
for continuous linear functionals on a normed linear space. However,
if the domain space is a Banach space, the the limiting functional is
continuous. We shall derive this fact as a consequence of the following
general result.

Theorem 3.1.14 (Uniform boundedness principle) Let X be a
Banach space, Y be a normed linear space and A be subset of B(X,Y)
such that {Ax : A € A} is bounded for each v € X. Then A is a
bounded subset of B(X,Y).
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Proof. Let us denote the norms on X and Y by |- ||x and || - ||y,
respectively. Since {Ax : A € A} is bounded in X, for each x € X
sup ge 4 ||Az|ly is a well defined non-negative real number. Define

[z« = [lz]|x + sup [[Az[ly, z€X.
AcA

It is easily seen that || - ||« is also a norm on X. Further, || - |« is
stronger than | - || x. Now, we show that || - ||« is complete. For this,
let (xy,) be a Cauchy sequence in X with respect to || -||«. Since |||«
is stronger than || - || x, (z,,) is a Cauchy sequence in X with respect
to ||-||x as well. Using the completeness of || - || x, there exists z € X
such that ||z, — z||[x — 0 as n — oo. Hence, for every A € A, by
its continuity, ||Az, — Az| — 0 as n — co. Now, let € > 0 be given.
Since (zy,) is a Cauchy sequence in X with respect to ||-||«, for e > 0,
there exists N € N such that

|z — zm||x + sup || Az, — Azp|ly <e VYn > N.
AeA

Let A € A. From the above inequality, we have
lxn — xmllx + ||Azy — Azp|ly <& Vn >N, (i)

and since, |Az, — Az||x — 0 as n — oo, letting m — oo in (i), we
have
|lzn — z||x + ||Azn — Az|ly <& Vn>N.

This is true for every A € A. Therefore,

|z — 2|l = ||xn — z||x + sup ||Az, — Az|ly <& Vn > N.
AeA

Thus, we have shown that (z,,) converges with respect to || - ||, and
consequently, || - ||« is complete. Hence, by Corollary 3.1.9, || - ||« and
|| - [|x are equivalent, so that there exists ¢ > 0 such that

]|« < c|lz||lx VzeX.

In particular,
sup ||[Az|ly < c||z||x Vze X.
AcA

Hence, ||A]| < ¢ for all A € A, and the proof is complete. |1
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Remark 3.1.1 The proof of Uniform Boundedness Principle given
above is different from that usually appear in standard text books
on Functional Analysis. This proof was conveyed to the author by
Professor S. Ramaswamy [7]. O

Corollary 3.1.15 (Banach—Steinhaus theorem) Let X be a Ba-
nach space, Y be a normed linear space and (A,) be a sequence of
operators in B(X,Y) which converges pointwise on X. Then (||Ay]|)
is bounded and the operator A : X —Y defined by

Az := lim Az, z€ X,

n—oo
belongs to B(X,Y).

Proof. Tt can seen easily that A is a linear operator. Now, since
(A;,) converges pointwise on X, by Theorem 3.1.14, (||A]|) is bounded,
say ||An|| < M for all n € N for some M > 0.

Now, let © € S be such that ||z]] < 1. Let N € N be such that
|Apz — Az|| < 1 for all n > N. Then we have

[Az| < [|Az — Anz| + [|Anz| < 1+ M.

This is true for all x € S. Hence, A € B(X,Y). |

3.2 Hahn-Banach Extension Theorem

We know that if X is a Hilbert space, then its dual can be identified
with X by a conjugate linear isometry.
What can we say about the dual of a general normed linear space?
Of course, if X is finite dimensional, then we know that X' is
of the same dimension as that of X. Also, in certain specific cases,
we can identify the dual space. In this context, we may recall from
Section 2.3 the following:

e For 1 < p < oo, the dual of ¢ is linearly isometric with £9.

e For 1 < p < oo, the dual of LP[a,b] is linearly isometric with
Lia,b].

e The dual of C[a, b] with ||-||« is linearly isometric with N BV [a, b].

Here g is the conjugate exponent of p, i.e., 1/p+ 1/q = 1. However,
using the theory discussed so far, we are not in a position to say
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even that X’ is nonzero whenever X is nonzero! Our attempt is
to prove a general theorem, called Hahn-Banach extension theorem,
using which we shall, in fact, show that

dim (X') > dim (X).

3.2.1 The theorem and its consequences

Theorem 3.2.1 (Hahn-Banach extension theorem) (HBET)
Let Xo be a subspace of a normed linear space X. If fo € X{, then
there exists f € X' such that

fixg = fo and |If] = [lfol|-
Before proving HBET, let us deduce some of its consequences.

Corollary 3.2.2 Let X be a nonzero normed linear space and xq be
a nonzero element in X. Then there exists f € X' such that

f(zo) = |lzo|| and ||f|| =1
Proof. Let Xo = span{zo}, and define fp : Xg — K by
folazo) = allzoll, €K

Clearly, fo is a linear functional on Xy. Further, fo € X and || fo| =
1 (Exercise). Hence, by HBET, there exists f € X’ such that f(zg) =
folxo) = llzol and || f] = [l foll =1. W

More generally we have the following.

Corollary 3.2.3 Let Xg be a closed proper subspace of a normed
linear space X and xg € X \ Xo. Then there exists f € X' such that

f(zo) = dist (x0, Xo) ||fll=1 and f\xo =0.
Proof. Let X; = span{zg, Xo}, and define fy : X1 — K by
folazg +u) = adist (zg, Xo), a €K, wue X
Clearly, fo is a linear functional on X;. Further,

| fo(axo + u)| = dist (axg, Xo) = dist (axg + u, Xo) < ||axo + ul|
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for all & € K, u € Xy. Thus, fo € X and || fo|| < 1. Also, we have
dist (20, Xo) = [fo(zo)| = [fo(zo — w)| < [[follllzo —ull  Vu € Xo.

Hence,
dist (zo, Xo) < || fol|dist (20, Xo).

Since dist (zg, Xo) > 0, we have || fo|| > 1. Thus, ||fo]| = 1. Hence,
by HBET, there exists f € X' satisfying

fix, = Jo and |[f] = [l foll-

In particular,

f|X0 :fO\XO =0, |[fll=Ifll=1

and
f(@o) = fo(zo) = dist (2o, Xo).
This completes the proof. |

An immediate consequence of the above corollary, which is often
used in applications, is the following.

Corollary 3.2.4 Let Xy be a subspace of a normed linear space X .
If there exists a nonzero f € X' such that f(x) = 0 for every x € Xy,
then Xo is not dense in X.

Corollary 3.2.5 Let X be a normed linear space and {uq,...,ux}
be a linearly independent subset of X. Then there exists a linearly
independent set {f1,..., fr} C X' such that

filuj) =di5, 4,5=1,...,k.

Proof. Let Xy = span{uy,...,ux}. Then, from linear algebra,
we know that there exist linear functionals g; on Xy such that

gi(uj) = 5@' Vi,j = 1,...,]{}.
In fact, g; is defined by

k
gi(Zajuj) =0, o€ K.

J=1
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Since Xy is finite dimensional, by Theorem 2.1.4, g; € X{. Hence,
by Theorem 3.2.1, each g; has a norm preserving extension f; to all
of X, so that f; € X’ and

filug) = gi(uj) =035, 1,5=1,... k.
This completes the proof. |1

Corollary 3.2.6 Let X be a normed linear space and Xy be a finite
dimensional subspace of X. Then there exists a closed subspace Z of
X such that X = Xo + Z and Xo N Z = {0}.

Proof. Let dim (Xo) = n and let {ui,...,u,} be a basis of Xj.
Let fi,..., fx be as in Corollary 3.2.5. Then every x € X can be
expressed as ¢ = y + z where

y:ij(:L’)uj €Xo and z=z—-yeZ:= ﬂN(fj).
j=1 j=1

Note that Z is a closed subspace of X and XoNZ = {0}. 1

Corollary 3.2.7 Let A : X — Y be a finite rank linear operator
between normed linear spaces X and Y. Then A € B(X,Y) if and
only if there exist y1,...,yn in Y and continuous linear functionals
fi,--+, fn on X such that

Az = Zfz‘(l’)yzw re X.
i=1

Proof. Let A € B(X,Y) be of finite rank, say rank (4) = k, and
let {y1,...,yx} be a basis of R(A). Then, for every x € X, there
exist scalars aq(z),. .., ax(x) such that

k
Ax = Zaj(m)yj. (%)
j=1

Now, by Corollary 3.2.5, there exist continuous linear functionals
g1, .-, 9k on R(A) such that g;(y;) = d;;. Thus, from (x), we have

k

9i(Az) = Zaj(l’)gi(yj) =a(x) VzelX.
j=1
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Thus, taking f; = g; o A we see that f; € X’ and
k

Az = ij(:c)(m)yj. VoeX.
j=1

The converse part is obvious. |1

3.2.2 Proof of the theorem

We shall prove a theorem in a slightly general context and derive
Theorem 3.2.1 as a corollary to that. First a definition.

Definition 3.2.1 Let X be a linear space over C.

(i) A linear functional f : X — C is called a complex-linear
functional.

(ii) A function f: X — R is called a real-linear functional if
f is a linear functional considering X as a linear space over R, i.e., if

flety)=f@)+ fy), [floz)=af(z)
for all ,y in X and a € R. %
We shall also make use of the following two lemmas.

Lemma 3.2.8 Let X be a linear space over C.
(i) Let f : X — C be a complex-linear functional. Then the
function ¢ : X = R defined by

o(x) =Ref(z), =€ X,

is a real-linear functional and f(x) = p(x) —ip(ix) for all x € X.
(ii) Let ¢ : X — R be a real-linear functional. Then the function
f: X — C defined by

f(l') - (p(.%') - i(p(i.@), re X,
is a complex-linear functional.
Proof. (i) It can be easily seen that
el +y)=p@)+ey), ¢lar)=ap(r)

for all z,y in X and a € R. Thus, ¢ is a real-linear functional. Next,
let
Y(x) =Im f(x), =€ X.
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Then we have f(x) = p(z)+iy(x) for all z € X. Also, for all z € X,
since f(ix) =if(x), we have

plix) +ip(ix) = = (x) + ip(z).
Therefore, 1)(z) = —p(iz) so that

J(2) = (@) + i(a) = p(a) — ipliz) Ve X,

(ii) It can be easily seen that

fle+y)=f@)+ f(y), floz)=af(z)
for all x,y in X and o € R. Also, for z € X, we have
fliz) = o(iz) —ip(—x)
= o(iz) + w( )

= ilp(x) —ip(iz)]
f ().

~.

Hence, for x € X and o, 5 in R,
flaw +ifz) = f(az) + f(ifr) = of (z) + Bf (ix) = of (x) + iBf(z).
Thus, for z € X and A € C, we have

fQx) = Af ().
This completes the proof. |

Lemma 3.2.9 Let X be a linear space over C, p : X — R be a
seminorm and f: X — C be a linear functional. Then

1f(x)] <p(z) VazeX < |[Ref(x)| <plx) VaelX.
Proof. Clearly,
|f(2)| < plz) VxeX = [Ref(z)| <plx) VzeX.

Conversely, suppose |[Ref(z)| < p(z) for all z € X. Now, if z € X,
then |f(x)| = Af(x) for some A € C with |A] =1 and . Thus,

[f(@)] = Af(z) = f(Az)
so that |f(x)| = Ref(Az) and hence
|f(@)| = [Ref(Az)| < p(Az) = |Alp(z) = p(x).
This completes the proof. |
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We shall derive Theorem 3.2.1 from the following general version.

Theorem 3.2.10 (Hahn-Banach extension theorem) (HBET)
Let Xy be a subspace of a linear space X and p : X — R be a
seminorm. If g : Xo — K is a linear functional on Xy such that

l9(z)| <p(z) Ve Xo
then there exists a linear functional f : X — K on X such that
[f(@)| <p(z) VzelX.

Proof. If Xg = X or g = 0, then we can take f = g. So assume
that Xo # X and g # 0.

First we consider the case of K = R.

Let zp € X \ Xo. The idea of the proof is that first we extend
g to a linear functional on span { Xy, z¢} satisfying the requirements
and then use that result to extend to all of X. So, let

Xo = span {zo; Xo} = {u + azg : u € Xo, a € R}.

Note that for every u,v € X,
9(w) — 9(v) = g(u—v) < p(u— v) < p(u — z0) + p(v — 20)

so that

g(u) — p(u — z9) < g(v) + p(v — x0) Vu,v e Xo.
Hence,
sup {g(u) — p(u —xg) : u € Xo} < inf{g(u) + p(u — o) : u € Xo}.
Now, let 7 € R be such that
sup {g(u) —p(u—xp) : u € Xo} <r <inf {g(u)+plu—mzp) : u € Xo}.
Then we have
g(u) —plu—=z9) <1 Vue€ Xo, 7r<g(u)+plu—1z0) Yuée X,

so that
lg(u) — 7| < p(u — x0) Yu € Xp.
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Let §: Xo — R be defined by
g(u+ axy) = g(u) + ar, u € Xo, v € R.

Then, it can be easily verified that ¢ is a linear functional on )Z'o.
Further, for u € Xy and « # 0, we obtain

[(=a)lg(—u/a) —7]|
< lalp(—u/a = zo)
p(u + axp).

l9(u) + ar|

Thus,
|9(u + axg)| < p(u + axo) Yu e Xg, a €R.
Thus, we have proved that g : )Afo — R s a linear functional satisfying
g@)| <plx) Ve X

We shall use the above result, along with Zorn’s lemma, to obtain
a linear extension f : X — R of g such that |f(z)| < p(x) for every
x € X. For this purpose, consider the family S of all pairs (Y, h),
where Y is a subspace of X such that X CY and h : Y — R is
a linear extension of g such that |h(x)| < p(x) for all x € Y. This
family S is non-empty, since ()Zo, g) obtained in the last paragraph
belongs to S. For (Y1,h1), (Ya,he) in S, define (Y1,h1) < (Y2, ha)
whenever Y7 C Y5 and hy is an extension of hy. It can be seen that
< is a partial order on §. Suppose T is a totally ordered subset of
S. Then consider

Z=U{Y :(Y,h) €T},

and define ¢ : Z — R such that ¢(x) = h(z) whenever x € Y,
(Y,h) € T. Then, we see that (Z,¢) € S, and (Z, ¢) is an upper
bound of 7. Therefore, by Zorn’s lemma, S has a maximal element,
say (Yo, f). Now, we show that Yy = X.

Suppose Yy # X, and let yo € X \ Yy. Then, by the first part
of the proof, f has a linear extension, say f to }70 := span {yo; Yo}
satisfying |f(z)| < p(z) for all z € Yp. Thus, we have

(Yo.f) < (Yo, /) €S, (Yo.f) # (Yo, f)

contradicting the maximality of (Y, f). Therefore, Yy = X, and f is
a linear extension of g satisfying |f(z)| < p(z) for all z € X.
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Now we take up the case of K = C. Let gy : Xg — R be defined
by
go(x) = Reg(x), =z € Xp.

Then by Lemma 3.2.8 and Lemma 3.2.9, gg is a real-linear functional
on Xy satisfying |go(z)| < v(x) for all z € Xy. Therefore, by the
earlier part, gg has a real-linear extension fy : X — R satisfying
|fo(x)] < v(x) for all z € X. Again, by Lemma 3.2.8 and Lemma
3.2.9, the function f : X — C defined by

f(z) = fo(z) —ifoliz), € X,

is a complex-linear functional satisfying |f(x)| < v(z) for all x € X.
This f is an extension of g since, for every = € Xy,

f(@) = fo(z) — ifoliz) = go(z) — igo(iz) = g().
This completes the proof of the theorem. I

Remark 3.2.1 A natural question that may come into mind is
whether there is an analogue for Hahn-Banach extension theorem for
general operators. In general, the answer is not in affirmative. To
see this suppose X is an infinite dimensional normed linear space and
X is a non-closed subspace of X. Let Ay : Xo — X be the identity
operator on Xjy, i.e.,

Agz =2 Vze X

Clearly, Ay € B(Xy) with ||Ap|| = 1. However, there is no norm
preserving extension for Ag to all of X. To see this, suppose there is
a norm preserving extension A : X — Xy. Then taking Iy : Xg — X
as the inclusion operator, we see that

P = I(]A

is a projection operator in B(X) with |P|| = 1 and R(P) = Xj.
This forces Xy to be a closed subspace, which is a contradiction to
the assumption on Xg. %

3.2.3 Further consequences

We have seen that every normed linear spaceis linearly isometric
with a dense subspace of a Banach space (cf. Theorem 1.3.16). This
fact is also a consequence of Hahn-Banach extension theorem, as the
following theorem shows.
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Theorem 3.2.11 Let X be a normed linear space. For each x € X,
let 7 : X' — K be defined by

2(f) = f(z), feX'

Then & € X" for every x € X, and the function J : X — X" defined

by
Jx)=1z, =z€lX,

is a linear isometry. In particular, closure of { : x € X} is a
completion of X.

Proof. Let x € X. Then we observe that

(f +ag) = (f +ag)(z) = f(z) + ag(x) = 2(f) + ai(g)

for all f,g € X and for all « € K. Further,

(Ol =@ <If =]l Vv feX"

Hence, & € X" for each z € X and ||z|] < ||z||. Clearly, if z = 0,
then # = 0. If z # 0, then by Corollary 3.2.2, there exists f, € X’
such that

fa(z) = |lz| and |fa] = 1.

Thus,
2]l = | fo(z)] = [2(f)| < 12[ | fall = [[2]]-

Thus, we have proved that
2] = [lz]] V& eX.

It remains to show that J : x — % is a linear operator. For this, let
z,y € X and o € K. Then, for every f € X', we have

Orrar(f) = flz+ay) = f(x)+af(y)
= 2(f) + apy(f) = (& + apy)(f).

The last part follows, because, X” is a Banach space. This competes
the proof. 1

Definition 3.2.2 Let X be a normed linear space.

1. The linear isometry J : X — X” obtained in Theorem 3.2.11
is called the canonical isometry from X to X”.
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2. The space X is said to be a reflexive space if the canonical
isometry J : X — X" is surjective.

O

Clearly, a reflexive space has to be a Banach space. It is known
(cf. Nair [5]) that the spaces

e (P and LP[a,b] for 1 < p < oo, and Hilbert spaces are reflexive
spaces,

whereas the spaces

o (1 ¢ Lla,b], L>=[a,b] and Cla,b] (with || - ||co) are not re-
flexive spaces.

Theorem 3.2.12 Let X be a non-zero normed linear space and let
Qi={feX":|fll=1}
For each x € X, let v, : 2 — K be defined by

pr(f):f(x)v f e

Then g, € Cy(2) for every x € X, and the function T : X — Cp(Q2)
defined by

T(z) =y, x€X,
is a linear isometry. In particular,
X :=c{T(z): 2 € X}
is a closed subspace of Cy(R2) and it is a completion of X.

Proof. Use the arguments as in Theorem 3.2.11. 1

Note that, for proving the last part of the Theorem 3.2.11, we
used the fact that dual of a normed linear spaceis a Banach space
(cf. Theorem 2.1.3). Now, we prove the converse of this statement.

Theorem 3.2.13 Let X and Y be normed linear spaces with X #
{0} and let B(X,Y) be a Banach space. Then'Y is a Banach space.
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Proof. Let (y,) be a Cauchy sequence in Y. We have to show
that (y,) converges to some element in Y. Since X # {0}, there
exists zp € X such that ||zo| = 1. By Corollary 3.2.2, there exists
fo € X’ be such that

fo(zo) = [lzol| =1 and | fol| =1.
For each n € N, let A, : X — Y be defined by
Apz = fo(x)yn, z€ X.

Clearly, A, is a linear operator for every n € N. Further, for every
x € X and n € N, we have

[Anz]| = [l fo(@)ynll = | fo(@)| [lynll < lyalllzl

so that A, € B(X,Y) and ||A,|| < ||yn|| for all n € N. Also, we have,
for every x € X and n € N,

1(An = Am)z|| = [|Anz — Apzll = [ fo(2)(Yn = ym)I| < lyn = ymll[]]

so that ||Ay, — Anll < |lyn — ym|| for all n € N. Consequently, (A;,)
is a Cauchy sequence in B(X,Y). Since B(X,Y) is Banach space,
there exists A € B(X,Y) such that ||A, — A|| — 0 as n — oo. Thus,
in particular, taking yo := Axg, we have

lyn — voll = [|[Anzo — Azol| = 0 as n — 0.
This competes the proof. I

3.2.4 Problems

1. Let X and Y be inner product spaces and A : X — Y be a
linear operator. Prove that, if A* exists then A* is a closed
operator.

2. Every self adjoint operator on an inner product space is a closed
operator. Why?

3. Let X be an inner product space, Y be Hilbert space and X be
a dense subspace of X. Let A : Xy — Y be a linear operator.
Prove that there exists a subspace Yj of Y and a closed operator
B : Yy — X such that

(Az,y) = (z,By) Ve Xy, yeY.
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11.

12.
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. Every linear functional on a normed linear spacewhich is a

closed operator is continuous. Why?

Is every continuous linear functional on a normed linear space a
closed operator? Why?

Let X be a Banach space, Y be a normed linear space, X be
a subspace of X and A : Xg — Y be a closed operator. Prove
that if A is bounded below, then R(A) is a closed subspace.

Let X be a Banach space, X be a subspace of X and A : Xo —
Y be a linear operator which is bounded below. Prove that A
is a closed operator if and only if R(A) is closed.

Let X = L2[0,1] =Y and Az = 2/, x € X,, where X is linear
space of all x € L?[0,1] such that x is absolutely continuous
with 2(0) = 0 and 2’ € L?[0,1]}. Prove that A : Xg — L?[a, b]
is a bijective, closed operator.

Let X be a Banach space, Y be a normed linear space, Xg be
a subspace of X and A : X¢g — Y be a closed operator. Prove
that the following are equivalent:

(a) A is bijective and A1 is continuous,

(b) A is bounded below and R(A) is dense.

Let X be a Banach space and P € B(X) be a projection oper-
ator. Prove that P € K(X) if and only if rank (P) < oo.

Let X be a Banach space and P : X — X be a projection
operator. Prove that P € B(X) if and only if R(P) and N(P)
are closed subspaces of X.

Let X and Y be a Banach spaces, and (4,) be a sequence
of operators in B(X,Y’) which converges pointwise on a dense
subset of {z € X : ||z|| < 1}. Prove that, if S is a relatively
bounded subset of X, then

sup{||Apx — Az||:x € S} -0 as n— oo,

that is, (A,,) converges to A uniformly on S.
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13

14.

15.

16.

17.

18.

19.
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Let X be a Banach space and (P,) in B(X) be a sequence

of finite rank projection operators which converges pointwise.

Prove that P : X — X defined by Pz = lim P,z is a projec-
n—oQ

tion operator and P € B(X).

Let X be a normed linear spaceand (z,) be a sequence in X
such that, there is an x € X satisfying f(x,) — f(z) for every
f € X. Prove that (x,) is a bounded sequence. Is it necessary
that (x,) converges to 7 Why?

Let X be a normed linear space. Prove that if x,y € X with
x # y, then there exists f € X’ such that f(x) # f(y).

Prove Corollary 3.2.4.

Let X be a normed linear space, and for a subset S of X, let
S*:={feX : f(x)=0 VzeS}
Prove the following:

(a) S®is a closed subspace of X.
(b) If S is a subspace which is not dense in X, then S® # {0}.

Let X be a normed linear space and X be a finite dimensional
subspace of X. Prove that there exists a projection operator
P € B(X) such that R(P) = X.

Give details of the proof of Theorem 3.2.12.



