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Spectral Results

4.1 Eigen Spectrum and Approximate Eigen
Spectrum

Let X be a linear space and A : X — X be a linear operator. We
recall the following definition from linear algebra.

Definition 4.1.1 A scalar X is an eigenvalue of A if there exists a
nonzero x € X such that

Az = Az,

and in that case x is called an eigenvector of A corresponding to
the eigenvalue A. The set of all eigenvalues of A is called the eigen
spectrum of A and it is denoted by eig(A). O

Thus, A is an eigenvalue of A if and only if A— A is not one—one.
e )\ is an eigenvalue of A if and only if N(A — AI) is non-trivial,

and in that case every nonzero vector in N(A— AI) is an eigen-
vector corresponding to the eigenvalue A.

Theorem 4.1.1 Let X be a linear space and A : X — X be a linear
operator.

(i) If M, ..., Ay are distinct eigenvalues of A with corresponding
eigenvectors x1, ..., Ty, then {x1,...,x,} is a linearly indepen-
dent set.

(ii) If R(A) is finite dimensional, then oeig(A) is a finite set.

Proof. (i) This result is normally proved in a course in linear
algebra, and hence its proof is left as an exercise.
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(ii) Suppose 0cig(A) is an infinite set. Let (\,) be a sequence
in oeig(A) consisting of distinct nonzero terms, and for each n € N,
let z,, be an eigenvector corresponding to the eigenvalue \,. By (i),
{z,, : n € N} is linearly independent. Since Ax, = \,z, for all
n € N, it follows that

{z, :n € N} C R(A)
and hence, R(A) is infinite dimensional. Thus, (ii) is proved. 1
Remark 4.1.1 If X is finite dimensional, and if [A]g is the matrix

representation of A with respect to a basis E of X, then oeiz(A) is
the set of all eigenvalues of [A]g. O

Example 4.1.1 Let X = C[a, b] with |- || and let u € C[a, b]. Let
A: X — X be defined by

(Ax)(t) = u(t)x(t), t €la,b], ze€X.
Clearly, A € B(X). For x € C[a,b] and X € K
Az = v = (u(t) = N)z(t) =0 Vt € [a,bl.

Thus, A € oeig(A) if and only if there exists an interval Iy C [a, )]
such that u(t) = A for all t € I). In particular:

If u is not a constant function on any subinterval of [a, ],
then o.g(A) = @.

0

Example 4.1.2 Let X be ¢op or /7. Let (\,) be a sequence of
scalars and A : X — X be defined by

(Az)(j) = Njz(j), JjEN, zeX

Then we have
Ae, = e, VneN.

Also, for A € K and for a nonzero x € X,
Az =Xz <= Xe{\,:neN}L

Thus,
Oeig(A) = {A\n :n € N},
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In the last example, if A & {\,, : n € N}, but if A is a limit point
of {\, : n € N}, then there exists a subsequence of (\,), say (Ag,)
which converges to A, and in that case, taking the fP-norm, we have

[Aek, — Aeg, llp < [lAer, = Ak, ek, llp + Ak, — Al
= Ak, —A|—0 as n— oo

Definition 4.1.2 Let X be a normed linear spaceand A : X — X be
a linear operator. A scalar A is called an approximate eigenvalue
of A if there exists (z,) in X such that ||z,| = 1 for every n € N
and

|Azy, — Azp|| = 0 as n— oo.

The set of all approximate eigenvalues of A is called the approxi-
mate eigen spectrum of A and it is denoted by o.pp(A). O

Clearly,
Teig(A) € Tapp(A).

The proof of the following theorem is easy and hence it is left as an
exercise.

Theorem 4.1.2 If A is a linear operator on a normed linear space X
and A € K, then

A€ oapp(A) <= A— A s not bounded below.

Proof. Exercise. 1
As a consequence of the above theorem, we have:
® )\ € 0oypp(A) implies A — AI does not have a bounded inverse.

Thus, if A € o,4pp(A), then even if the operator equation
Ar — =y

has a unique solution for a given y € X, the solution does not depend
continuously on the data y.

To see this, suppose A € o,pp(A) and y € R(A— AI). Let x € X
be such that Az — Az = y, and let (u,) be such that ||u,| = 1 for
every n € N and [|Au,, — Auy,|| — 0. Then taking

Up = Aup — XNy, yn=y+v, and x, =+ uy,
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we have
Az, — Az, = yn

for every n € N. Note that

ly —ynl| =0 but |z—a,]=1 VneN.

Example 4.1.3 Let X be ¢y or ¢’ with || - |, and A be as in
Example 4.1.2, i.e.,

(Az)(7) = Ajz(4), JEN, zeX,

where (\,) be a sequence of scalars. Let A := {\, : n € N}. We
show that
Tapp(A) = clA.

We have already seen that cl A C o,p,(A) (see the discussion preced-
ing Definition 4.1.2). To see the reverse inclusion, let A € K\ cl A.
Then, for every x € X and j € N, we have

(A2)(5) = Ae(3)| = A = Ml [2)| > dl ()],
where d := dist (A, A). Thus,
|[Az — Az|| > d||z|| Vze X.
Consequently, A & capp(A). O
In view of Example 4.1.3, we can state:
e Limit of a sequence of eigenvalues need not be an eigenvalue.

But, limit of a sequence of eigenvalues is always an approximate
eigenvalue as the following theorem shows.

Theorem 4.1.3 Let X be a normed linear spaceand A : X — X be
a linear operator. Then

cloeig(A) C oapp(A).

Proof. We have already observed that geig(A) C 0app(A). Now,
let () is a sequence of eigenvalues of A which converges to A. Let
xn € X be such that ||z,| = 1 and Az, = \,z, for every n € N.
Then

Az, — Azy || < ||Azp — Ay || + [An — Al
= A=A =0 as n— oo

Thus, A € oapp(4). 1
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In fact, the last theorem is a consequence of the following theorem
as well.

Theorem 4.1.4 Let A be a linear operator on a normed linear
space X. Then oapp(A) is a closed set.

Proof. Let (A,) be a sequence in oupp(A) such that A, — X for
some )\ € K. Note that, for every z € X,

[Az = Anz| = [I(Az = Az) + (A = An)z|
> [|Az = Azf| = |A = An] ]|

for every n € N. Assume for a moment that A\ & oapp(A). Then
there exists ¢ > 0 such that

|Az — Az|| > c|lz|| Vz e X.
Hence, for k € N with |\ — A\g| < ¢/2, we have
| Az — Apz|| > ngH Vo e X,
This is a contradiction to the fact that \; € oapp(A4). |1
Theorem 4.1.5 If A € B(X), then
Tapp(A) € {A € KA < [JA][},

Proof. Let A € oa4pp(A). Let (z,) in X be such that ||z,| = 1 for
every n € N and ||Ax,, — Az, || = 0. Then, for every n € N, we have

Al = [Aznll = [[Azn — (A — Azg)[| < |A| + [[Azn = Az

Thus, |A| < ||A|| + ||Az, — Azy]|| for every n € N. Letting n — oo,
we obtain [\ < ||All. 1

Another proof. Let A € K be such that |[A\| > ||A||. Then, for
every r € X,

[Az = Az|| > [|Az]] = [[Az]| = (Al = [[A[D[|]]-

Hence, A — A is bounded below so that A\ & capp(A). Therefore, if
A € 0app(4), then [A] < [|4]. 1

Combining Theorems 4.1.4 and 4.1.5, we obtain the following.



138 Spectral Results

Corollary 4.1.6 If A € B(X), then oapp(A) is a compact set.

Example 4.1.4 Consider the operator A in Example 4.1.1, i.e.,
X = Cla,b] with || - ||oc and A : X — X is defined by

(Azx)(t) = u(t)x(t), t€la,b], ze€X,

where v € Cfa,b]. We have seen that oeg(A) = @. Now, we show
that
Oapp(A) = cl{u(t) : t € [a,b]}.

For this, first let A & cl1S, where S = {u(t) : ¢t € [a,b]}. Then,
d:=inf{|\ — p| : p € S} > 0 so that we obtain

|Az — Az||oo > d||z]|c Y € Cla,b].

Hence, app(A) C clS.

To obtain the reverse inclusion, by the closedness of oapp(A), it
is enough to prove S C oapp(A). So, let A € S and ¢y € [a,b] be
such that u(tgp) = A. For each n € N, let I, be an open interval
containing A such that its length is less than 1/n. Since u € Cla, b],
there exists an interval J,, C [a, b] containing ¢y such that u(J,) C I,.
Let z,, € C[a,b] be such that ||z,||cc =1 and z,(t) = 0 for t & J,.
Then we have

1
|Azp, — Azp||oo = sup |u(t) — Al |z, (t)] < sup |u(t) — A < = = 0.
teJy, tedy n

Thus, S C oapp(A). Thus, we have shown that oapp(A) =clS. O

Next we show some nice properties of the approximate eigenspec-
tra of compact operators. Before that, we prove the following lemma
which will be used subsequently.

Lemma 4.1.7 (Riesz lemma) Let X be a normed linear space, X
be a proper closed subspace of X and 0 < r < 1. Then there exists
z, € X such that

|z || =1 and dist(x,, Xo) > .

Proof. Since X is a proper closed subspace of X, there exists
x € X \ Xo such that d := dist (x, Xg) > 0. Since d/r > d, there
exists u € X such that ||u — x| < d/r. Let
T —u

T =
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Then ||z,|| =1 and

dist (z, Xo) >i_
le —wll — d/r

dist (z,, Xo) = T.

This completes the proof. I
Theorem 4.1.8 Let A € K(X). Then the following hold.

(i) gapp(A) \ {0} = 0eig(A) \ {0},
(i) N(A—XI) is finite dimensional for every nonzero A € oeig(A).

(iii) O is the only possible limit point of oeig(A), and oeig(A) is a
countable set.

Proof. (i) Its enough to prove that gapp(A) \ {0} C oeig(A) \ {0}.
So, let A € oapp(A) \ {0} and let (x,,) in X such that ||z,| =1 for
every n € N and ||Az,, — Az, || — 0 as n — oco. Since A is a compact
operator, there exists a subsequence (zy, ) such that Az, — y for
some y € X. Hence,

1
T, = 5 [Axh, = (Azk, — Az, )] = %
so that we have A

Since Axy, — y, we obtain Ay = A\y. Also, y # 0, since ||z, || = 1
and A # 0. Thus, we have proved that A € ogig(A).

(ii) Let A be a nonzero eigenvalue of A. Suppose N(A — AI) is
infinite dimensional. Let {z, : n € N} be a linearly independent
subset of N(A — AI). Let Xo = {0} and for n € N, let

Xy i=span{xy,..., T}

Since {x, : n € N} is linearly independent, by Riesz lemma (Lemma
4.1.7), for each n € N, there exists u, € X,, such that

lupl =1 and dist (up, Xp—1) >

N |

Note that for n,m € N with n > m, u,,, € X,,—1 and

A
At — At = [ A — )| 2 2.
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Thus, (Au,) does not have a Cauchy subsequence so that (Au,,) does
not have a convergent subsequence.

(iii) For r > 0, let
Ay = {X € 0eig(A) : [N > 1}

It is enough to prove that prove that A, is a finite set (Why?).
Assume for a moment that A, is an infinite set for some r > 0. Let
(An) be a sequence of distinct elements from A,. For each n € N, let
Ty, be an eigen vector of A corresponding to the eigenvalue A,. Let
Xo = {0} and for n € N, let

X, :=span{zy,...,zp}.

Since {z;, : n € N} is linearly independent, by Riesz lemma (Lemma
4.1.7), for each n € N, there exists u, € X,, such that

lun|l =1 and dist (u,, X5—1) >

N |

Note that for n,m € N with n > m,
Ay, — Ay, = Aty + (Auy — Apuy) — Ay,

where
Au,, — My, € Xp—1 and  Au,, € Xp—1.

Hence,

|Au,, — Aup, || > dist (Apup, Xpn—1) = | An|dist (up, Xp—1) >

N3

Thus, (Au,) does not have a Cauchy subsequence so that (Au,) does
not have a convergent subsequence. I

By the very nature of a compact operator, it is clear that if X is
infinite dimensional and A € K(X), then

0 € Tapp(S).

In view of Theorem 4.1.8, one may enquire whether every compact
operator has an eigenvalue. The answer is, in general, not in affir-
mative as the following example shows.
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Example 4.1.5 Let X = L?[a,b] and

(Az)(s) = /Sac(t) dt, e Lab]

Recall from Example 2.4.4 that A is a compact operator.
Now, let A € K and = € L?[a, b] be such that Ax = Az. Then we
have

Az(s) = / x(t)dt, for almost alls € [a, b].
Recall from fundamental theorem of Lebesgue integration, that for
u € L*[a,b], if
v(s) :/ u(t)dt, s € [a,b],
then v is absolutely continuous, and v" = u almost everywhere. Thus,

if A =0, then x = 0, and if A # 0, then z is absolutely continuous,
z(a) =0 and

so that, in this case also, we obtain = 0. Thus, A does not have
any eigenvalue. ([

4.2 Resolvent Set and Spectrum

Throughout this chapter, we assume that X is a normed linear
spaceand A : X — X is a linear operator. For deriving interest-
ing and important results, we shall assume further properties on X
and A.

Definition 4.2.1 The set of all A € K such that A — Al is bijective
and (A —I)~! is continuous is called the resolvent set of A, and it
is denoted by p(A). The compliment of p(A) is called the spectrum
of A, and it is denoted by o(A). O

Thus, for A € K,
Nep(A) < A— M is bijective and (A — \I)~! € B(X),
Aeo(A) <= X¢gp(A).

The following theorem is an immediate consequence of bounded
inverse theorem (Corollary 3.1.8).
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Theorem 4.2.1 If X is a Banach space and A € B(X), then
o(A) ={A e K: A— X is not bijective }.
Theorem 4.2.2 Let X be a Banach space and A € B(X). Then
0(A) = oapp(A) Uocom(A),

where oeom(A), called the compression spectrum of A, is the set
all those X € K such that R(A — XI) not dense in X.

Proof. Clearly,
Tapp(A) U Tcom(A4) C o (A).

Next, let A & 0gpp(A)U0com(A). Then A — A is bounded below and
R(A — XI) is dense. Hence, A — AI is bijective so that by Theorem
421,

0(A) C Tapp(A) U ocom(A).

This completes the proof. |

Clearly
Gus(4) € Gupp(4) € o(4).

We have already seen the case where the first inclusion above is
strict. The following example shows that the second inclusion also
can be strict.

Example 4.2.1 Let X = ¢y with #P-norm and A be the right shift
operator, that is,

. 0, i=1,
Mwm:{ﬂ%&%i#L

Then ||Az| > ||z| for all x € X and e; ¢ R(A). Thus,
0 € a(A)\ oapp(4).
Also, for any A € K with |A| < 1, we have
[Az = Azl = [[Az]| — [[Az]| = (1 = [AD[lz]| V2 € X,
and we see that e; & R(A — AI) so that

{AeK: A\ <1} Co(A)\ oapp(4).
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We shall see in Example 4.2.3 that, for this operator A,
o(A)={AeK:|A| <1} and oapp(4A) ={A e K: [N\ =1}
O

Example 4.2.2 Let X be ¢y or  with || - ||, and A be as in
Example 4.1.3, i.e.,

(Az)(j) = Nali), jEN, we X,
where () be a sequence of scalars. We have seen that
Oeig(A) = A and  oapp(A) = clA,
where A :={\, : n € N}. Thus, clA C 0(A). Now, we show that
o(A) =clA.

Let A &€ cl A. We know that A — Al is one-one. For y € X, let x € X
be defined by

()
DV
Since |A\j — A| > d :=dist (A\,clA), € X, and Ax — Az = y so that
A — M is onto as well. Further,

x(j) Vi e N.

- Y
14— A1~y = e < 121

so that (A — AI)~! is a bounded operator. Thus, o(A4) C clA, and
we have completed the proof of o(A) = cl A. O

We have seen that oapp(A) is a closed set, and if A € B(X), then
app(A) € {X € K: |\ < ||A]|}. Now, we show that these results
hold for o(A) whenever X is a Banach space.

Theorem 4.2.3 Let X be a Banach space and A € B(X). Then the
following hold.

(i) o(A) is a bounded set. More precisely,
o(A) C{A e K: Al < [JA[]}.

(ii) p(A) is an open set. More precisely, for each Ao € p(A),
IV EK A= Aol < 1/[I(A— 2D} € p(A).
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In particular, o(A) is a compact subset of K.

Proof. (i) Let € K be such that |A] > ||A|l. Then, for every
z e X,

(A = AD)z|| = [[Az] = [[Az]| = ([A] = [|AD[|2]]-

From this, it follows that A — AI is one-one, R(A — \I) is closed and
A — A has a continuous inverse from its range. Hence, to complete
the proof of (i), using Theorem 4.2.1, it is enough to prove that
R(A — A\I) = X. Suppose this is not true. Then, by a consequence
of Hahn Banach theorem (see Corollary 3.2.3 ), there exists f € X’
such that ||f|| =1 and f(y) =0 for all y € R(A — AI). In particular,
f(Az — Az) =0 for all z € X. Hence,

Azl = [IAz]] = [lf (A2) | < [[FIHAI =l = (A=l Va2 e X.

Thus,
(A =1ADNz =0 VzeX.

This is a contradiction, since [A| > ||A|. Thus, |[A| > ||Al| implies
A — M is bijective.

(ii) Let Ag € p(A) and X € K be such that
A= Xol < 1/[(A = XoD)H.
Since,

A—X = (A=XI)—(A=X)I
= [T = (A= 20)(A—=XoI) "J(A = NI,

by (i) and Theorem 4.2.1, A € p(A). Thus,

1
{deK: |)\f)\0]<m}§p(/l).

Hence, p(A) is an open set and consequently, o(A) is a closed set.
By (i) and (ii), o(A) is a compact subset of K. 1

Corollary 4.2.4 Let X be a Banach space and A € B(X). Then

o(A) C (A eK: A < [lA""/".

n=1
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Proof. Tt is enough to show that

U ek A" > A7)} € p(A).

n=1
So, let A € K is such that |A|™ > ||A"|| for some n € N. Note that

A" = AT = (A= AI) Zn: NTIAT = [zn: XA | (A=)

j=1 7j=1

By Theorem 4.2.3(i), A™ — A\"I is bijective. Hence, from the above
equalities, A— I is bijective. Since X is a Banach space, by Theorem
421, e p(A). 1

Definition 4.2.2 Let A € B(X). Then the number
ro(A) :==sup{|A\|: A€ o(4)}
is called the spectral radius of A. O

By Corollary 4.2.4, if X is a Banach space and A € B(X), then

ro(A) < inf |47V,

In fact, we have the following theorem. We omit its proof. Inter-
ested reader may see the proof in [5].

Theorem 4.2.5 (Gelfand—Mazur Theorem) Let X be a Banach
space over the complex field C and A € B(X). Then

(i) (Gelfand—Mazur Theorem) o(A) is nonempty,

1/n

(ii) (Spectral radius formula) li_}m |A™||*™ exists and
n—od

re(A) = lim ||A™|Y".

n—o0

Theorem 4.2.6 Let X be a Banach space and A € B(X). Then,
every boundary point of o(A) is an approximate eigenvalue of A.
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Proof. Let X be a boundary point of 0(A). Then A € 0(A) and
there exists a sequence (uy) in p(A) such that p, — A. Suppose
A & oapp(A), and let ¢ > 0 be such that

|[Az — Az|| > c||z]| Vz e X.

Let N € N be such that |\ — un| < ¢/2. Then, we have

Az — pnz| = [[(Az — Az) — (un — A)z|]
> |[|Az — Az| — [un — Alll=]|
> (c—lun = Az
Sl

2
Hence,
_ 2
(A~ w1y < 2
so that

A = pn)(A = pn D)~ < 1,

Therefore, by Theorem 4.2.3(ii), A € p(A). This is a contradiction
to the fact that A € o(A). 1

Example 4.2.3 Consider the Example 4.2.1. We show that
og(A)={AeK:|A[ <1} and oapp(4A) ={A e K: A\ =1}.
We have seen that
AEK: A < 1} € o(A4) | gupp(A).
It can also be seen that ||A| < 1. Thus,
{AeK: N <1} Co(A) CT{AeK: [N <1}

Hence, by the closedness of o(A), o(A) = {A € K : |A] < 1}
The above observations together with Theorem 4.2.6 imply that
Oapp(A) ={XA e K: |A] =1}. O

Example 4.2.4 Let X = Cfa,b] with || ||~ and let u € C[a, b]. Let
A: X — X be defined by

(Az)(t) = u(t)x(t), t€la,b], zelX.
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Clearly, A € B(X). We show that
o(A) =clS,

where S = {u(t) : t € [a,b]}. Recall from Example 4.1.4 that
oapp(A) = clS. Hence, it is enough to show that o(A) C clS.

Suppose A & clS. Then A — Al is one-one. Also, for every
y € Cla,b], the function = € C[a, b] defined by

t € [a,b],

satisfies the equation Ax — Az = y. Thus, for all A € cl S, A — A is
bijective. Since X is a Banach space, by Theorem 4.2.1, 0(A4) C S.
Thus, we have proved that o(A4) = clS. O

4.3 Spectral Results for Self Adjoint, Normal
and Unitary Operators

We know from linear algebra that if A is a self adjoint operator on
a finite dimensional inner product space, then its eigen spectrum
is nonempty finite set of real numbers, irrespective of whether the
scalar field is R or C. One may wonder whether the same can be said
about the spectrum of a self adjoint operator on a (possibly infinite
dimensional) Hilbert space. Yes, we can. We shall move towards the
justification of this claim.

Throughout this section, we consider X to be a Hilbert space and
A € B(X). Recall that A is

e self-adjoint if A* = A,

e normal if A*A = AA*, and

o unitary if A¥A=1= AA*.

We shall make use of the following easily verifiable result.
Lemma 4.3.1 Let A € B(X). Then

R(A)*t = N(A").
Theorem 4.3.2 Let A € B(X) and A € K. Then
R(A — \I) is dense in X if and only if X\ & oeig(A*).
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Proof. We note that for € K, (A — AI)* = A* — M. Hence, by
Lemma 4.3.1, replacing A by A — A, we obtain

A oeg(A*) = N(A* =\ = {0}
— RA-A)'={0}
<= R(A—\) densein X.

The last equivalence is a consequence of projection theorem. This
competes the proof. |

In view of the aove theorem together with Theorem 4.2.2, we have
the following corollary.

Corollary 4.3.3 Let A € B(X). Then
0(A) = oapp(A) U{A €K : X € 0eig(A")}.
Clearly, if A is self adjoint, then
oeig(A) C R.
We, in fact, have the following.
Theorem 4.3.4 Let A be a self-adjoint operator. Then
o(A) CR.

Proof. If K = R, then there is nothing to prove. Hence, assume
that K= C. Let A = a4+ ¢8 with «, § € R with g # 0. It is enough
to show that A € p(A). For this first we note that, for every x € X,

|Az — Xz||*> = ((A—ad)z+iBz, (A — o)z + ifx)
= [I(A—al)z|* + |8]*]l].

To obtain the above, we used the fact that
<(A - OéI).’E, B.’I}> - <B$, (A - CVI)$>

Thus, A — A\ is bounded below, so that it is one-one and R(A — \I)
is closed. Similarly, A — AI is also one-one. Hence, by Lemma 4.3.1,

[R(A—X\)]*F = N(A* = XI) = N(A— X)) = {0}.

Consequently, R(A — AI) is dense in X, so that by the closedness of
R(A —XI), A— X is onto. 1
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For normal operators we have the following.
Theorem 4.3.5 Let A be a normal operator and XA € K. Then
(i) Forx € X, Av = \v <= A*z = \z. In particular,

A€ O'eig(A) = )¢ O'eig(A*)-

(i) A peK, AN#Au= N(A—-X) L NA—ul).
(ili) o(A) = gapp(4).

Proof. Let x € X and A € K. Then, using the fact that A is
normal, we have

|Az — x> = ((A- AI) (A - A\)z)

(
(x, (A" = AX[)(A— M)z
(
(

)
x, (A— )\I)( 7)x>

(A" = Az, (A" = Al)z)
= HA*J:—/\J:H2.

From this, (i) follows.
Now, let A\, € K such that A # u. Let z € N(A — M) and
y € N(A — pI). Then, using (i), we have

Mz, y) = (Ax,y) = (Az,y) = (2, Ay) = (2, iy) = u(z,y).

Thus, A # p implies (x,y) = 0. Thus, (ii) is proved.
Now, (i) and Corollary 4.3.3 imply (iii). 1

Next result is concerned about the spectra of unitary operators.
Theorem 4.3.6 Let A be a unitary operator and X # {0}. Then
o(A) C{AeK: |\ =1}
Further, if 0(A) # &, then

re(A) = 1.
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Proof. Since A*A=1= AA*,
[Az[| = [lz] = [[A™]] V2 e X.

Hence, ||A]] = 1. Now, let A € K be such that |[A| # 1. Then for
every x € X, we have

[Az = Azl| > [ [[Az]| = A 2] [ = [1 = [A[ ]
Consequently, by Theorem 4.3.5 (iii), 0(A) C {A € K : |\ = 1}.
The last part follows from the definition of r,(A4). 1

Definition 4.3.1 For A € B(X), the set
W(A) == {{Az,2) : ||z| =1}
is called the numerical range of A, and
rw (A) := sup{|[(Az, z)| : [lz]| = 1}

is called the numerical radius of A. O
Observe:

o A self adjoint = W (A) C R.

Converse of the above need not be true. For instance, if K = R, then
W(A) C R even if A is not self adjoint. However, the converse holds
if the scalar field is C (see [5]).

Definition 4.3.2 If W(A) C [0,00), then A is called a positive
operator . O

Notation 4.3.1 For A € B(X) with W(A) C R, let us use the
following notations:

ay = inf{{Az,z): ||z| = 1},
Ba = sup{(Az,z): [z]| =1}.

Theorem 4.3.7 Let A € B(X) be self adjoint. Then

[A[] = rw (A) = max{|aal, [Bal},

and if A is positive self adjoint, then || Al = Ba4.
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Proof. Follows from Theorem 2.2.5. 1
Lemma 4.3.8 Suppose A is a positive self-adjoint operator. Then
Ba € o(A).
In particular, if A is positive self adjoint, then ro(A) = ||A]|.

Proof. Let (xy) in X be such that ||z,| = 1 for all n € N and
(Axy, x,) — B4 as n — oco. Note that

| Az, — 51455n||2 = ||A517n||2 — 2Ba(Azn, Tp) + 6124
< |IAI? - 2Ba{Azn, zp) + B3
Since (Axn,x,) — B4 as n — oo and B4 = ||A| (see Theorem

4.3.7), it follows from the above inequality that ||Az, — Bazy| — 0
as n — 0o. Thus, f4 € gapp(A4) =0 (A). 1

Theorem 4.3.9 Suppose A is a self-adjoint operator. Then
ro(A) = Al
In particular, there exists A € o(A) such that |A| = ||A]|.
Proof. In view of Theorem 4.3.7, it is enough to prove that
{aa, Ba} C o(A).
For this purpose, we may first observe that
B:=A—asl and C:=p41—-A

are positive self adjoint operators. Therefore, by what we have
proved in the previous paragraph,

Bp €0(B), pceoa(C).
But,
B = sup{((A — aal)z,z) : ||z = 1} = Ba — aa,
Bo = sup{{(Bal — A)z,z) : ||z]| = 1} = Ba — aa,
(B) ={A—aa:Aea(4)},
o(C)={fa—A:Aeo(A)}.
Hence, there there exists A, u € o(A) such that

g

Ba—aa=A—ag Ba—aa=pa—p

Consequently, 4 = X € 0(A) and g = pu € o(A). This completes
the proof of the theorem. |1
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Corollary 4.3.10 If A € B(X) is a compact self adjoint operator,
then there exists X € 0eig(A) such that |A| = || All.

Remark 4.3.1 Theorem 4.3.9, in particular, shows that if A is a self
adjoint operator, then the fact that o(A) # @ (cf. Theorem 4.2.5)
holds for a real Hilbert space as well. O

By Theorem 4.3.9, if A is a self adjoint operator, then o(A) # @.
However, the eigenspectrum can be empty even if A is self adjont as
the following example shows.

Example 4.3.1 Let X = L?[a,b] and
(Azx)(t) = ta(t) for almost all ¢ € [a,b].

Note that A is a self adjoint operator.
Now, for A € K and x € L?[a, b],

Az =Xz <= (A —1t)z(t) =0 for almost all t € [a, b
— z=0.
Thus, A does not have any eigenvalue. O

Recall from Theorem 4.3.5 (iii) that if A is a normal operator,
then o(A) = oapp(A). For a general bounded operator, we have the
following result.

Theorem 4.3.11 For A € B(X),
0(A) = oapp(A) U{A €K : X € 0eig(A”).
Proof. By Theorem 4.3.2, for A € K|
R(A — M) not dense in X <= X € oeg(A").

Hence, the result is a consequence of Theorem 4.2.2. |

4.4 Spectral Representations

Recall from linear algebra that if X is a finite dimensional inner
product space and A : X — X is a self adjoint operator, then A can
be represented as
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where Aq,...,\; are nonzero real numbers and {uj,...,ux} is an
orthonormal set in X.

In this section we prove that an analogous representation is possi-
ble if A is a compact self adjoint operator in a general Hilbert space.
Our proof includes the case of finite dimensional case as well.

First, let us recall the following facts about a compact operator
A on a general Banach space (cf. Theorem 4.1.8):

1. Eigen spectrum of A is countable,

2. 0 is the only possible limit point of he eigen spectrum of A,
and

3. Eigen space associated with every nonzero eigenvalue is finite
dimensional.

4. Every nonzero approximate eigenvalue of A is an eigenvalue.

Also for a self adjoint operator A on a Hilbert space A, we know
the following (cf. Theorems 4.3.5 and Corollary 4.3.10):

1. Eigen vectors corresponding to distinct eigenvalues of A are
orthogonal.

2. A has an eigenvalue A such that |A| = ||A4]|.

We shall also make use of a few simple-minded lemmas.

Lemma 4.4.1 Let A be a self adjoint operator on a Hilbert space X
and Xg be a closed subspace of X. Then

A(Xy) C Xo <= A(Xy) C X

Proof. Suppose A(Xy) € Xo. Let 2 € Xg. Then for every
y € Xo, Ay € Xo so that

(Az,y) = (z, Ay) = 0.

Thus, A(Xg) € Xg. Also, by projection theorem, Xg+ = Xy so
that from what we have proved,

A(XH) € Xi = A(Xo) = A(XgH) € Xg- = Xo.

This completes the proof. I
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Definition 4.4.1 Let A be a linear operator on a linear space X. A
subspace Xg of X is said to be invariant under A or an invariant
subspace for A if A(Xy) C Xp. O

Example 4.4.1 Let A be a linear operator on a linear space X and
let {A1,...,A\x} € K. Then it can be easily seen that

Xo=NA-MI)+...+ N(A—\I)
is invariant under A. O

Suppose A is a self adjoint operator on a Hilbert space X and X
is an invariant subspace for X. Then, by Lemma 4.4.1, XOl is also
invariant under A. Hence, it can be seen that

Al = A| and AQ = A‘Xi
0

Xo0

are self adjoint operators on Xy and Xol, respectively.

Lemma 4.4.2 Let A be a self adjoint operator on a Hilbert space
X and Xo be an invariant subspace for X. Let A1 = A|X0 and
AQ = A| I Then

X9

Ueig(A) = Ueig(Al) U Jeig(A2)-

Proof. We observe that if x € X and (u,v) € Xo x Xg is such
that © = u 4+ v, then x # 0 if and only if atleast one of v and v is
nonzero. Further, using the invariance of X and XOL and the fact
that Xo N Xg = {0},

Ax = \x < Aju = u and Asv = .
Thus, it follows that
Teig(A) = Teig(A1) U Teig(A2).
This completes the proof. |

Lemma 4.4.3 Let A be a self adjoint operator on a Hilbert space X
and let A1, ..., A\ be distinct eigenvalues of A. Let

X():N(A—)\lf)-i—...—f—N(A—)\kI)

and let Ay = A|XO and Ay == A|XL. Then
0
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(1) oeig(A1) = {A1,..., A},

(11) Ueig(AZ) = Ueig(A) \ {)‘17 cee 7)‘k}

Proof. (i) It can be easily seen that {Ai,..., A} € 0eig(A1).
Now, let A € g¢ig(A1). Then there exists a nonzero x € Xy such that
Az = Xz. Let x; € N(A— N\]I) for i = 1,...,k such that

rT=x1+ ...+ k.
Since N(A — NI) L N(A — \;I) for i # j, we have
lall2 = o2 + ..+ el
Hence, x; # 0 for some i € {1,...,k}. Also, since Az = Az and

Az — Az = (Azy—Ax1) + ...+ (Azg — Aag)
= ()\1—)\)331+...+()\k—)\)xk,

it follows that A = X\; € {A1,..., A\x}.

(ii) Let A € 0eig(A) \ {A1,...,A\¢}. By Lemma 4.4.2, we know
that oeig(A) = 0eig(A1) U 0eig(A2). Hence, by part (i), we obtain
X € 0(As). Next, suppose that A € o¢ig(A2). Then there exists a
nonzero r € XOL such that Az = Az. Then, A € {A1,..., A}, for if
A=\, for some i € {1,...,k}, then we would have Az = \;z so that
x € N(A— X\I) C Xp, which would contradict the fact that z # 0.
Thus, we have proved that A € oeig(A) \ {A1,..., Ax} if and only if
A€ Ueig(AQ). |

Now, we state and prove the main theorem of this book, the so
called spectral theorem for a compact self adjoint operator.

Theorem 4.4.4 Let X be a Hilbert space and A : X — X be a
nonzero compact self adjoint operator. Then

A= Z NP,
iEA

where {\j : j € A} is a countable set of real numbers which are the
eigenvalues of A and, for each i € A, P; is the orthogonal projection
onto the eigen space N(A — \;I).
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Proof. We know that the eigenspectrum of A is a countable set,
say Oeig(A) = {\i 1 € A}, where A = {1,...,k} for some k € N if
Oeig(A) is a finite set and A = N if 0.5(A) is an infinite set.

Case (i): 0cig(A) is a finite set.

Suppose Oeig(A) = {A1,...,A\g}, where A,...,\; are distinct.
We know that each N(A — \;I) is finite dimensional (cf. Theorem
4.1.8). Let {v;; : j = 1,...,n;} be an orthonormal basis of N(A—X\;I)
fori =1,...,k. By Theorem 4.3.5), N(A — A1) L N(A — \;I) for

1 # j. Hence,
k

U{Uij cj=1,...,n;}

i=1

is an orthonormal basis of
X = N(A—Alf)—f--'-—i-N(A—)\kI).
By projection theorem, every z € X can be written uniquely as

r=u+v with ue€ Xg ve Xp.

Note that
<$,’Uij> = (u,vij) VZ = 1,...,k, j = 1,...,ni,
k  n; k n
w=y Y (wvghvi =Y Y (. vy
i=1 j=1 i=1 j=1
so that
k
Ar = Au+ Av = Z)\iB:U+AU,
i=1

where P; is the orthogonal projection onto N(A — \;), i.e.,

ng

Px = Z(m,vij>vij, r e X.
j=1

Hence, it is enough to prove that Av = 0. Since X is invariant
under A, by Theorem 4.4.1, X kL is also invariant under A. Therefore,
A = A\XL is a compact self adjoint operator on XkL. We, in fact,

show that kAk = 0, which would imply that Av = 0.
Suppose A # 0. Then, by Corollary 4.3.10, A will have a
nonzero eigenvalue, say A, which would be an eigenvalue of A as
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well. Let y € X kL be a corresponding eigenvector. Then we have
Ay = Ay so that the A = \; for some ¢ = 1,...,k, and hence y €
N(A — \I) C Xj. This is a contradiction to the fact that y # 0.

Case (ii): 0eig(A) is an infinite set.

Suppose that A1, Ao, ... are the distinct eigenvalues of A. Without
loss of generality assume that [A\;| > |\i41| for every i € N. As earlier,
let

X =NA-MI)+---+ N(A - NJI).

Let x € X. Again, by projection theorem,
r=u+v with ue Xy, ve Xp

and
k

Ax = Z NiPx + Av,
i=1

where ||v]| < ||z||. Hence,

k
1Az = >~ AiPal| < || Agll Il

i=1
where Ay = A|X , is a compact self adjoint operator on X ,i- By
Lemma 4.4.3,
Oeig(Ak) = Oeig(A) \ {\1,.. ., A}
Hence, [|Ag|| = [Ax11] so that

k
1Az =~ XiPal| < || Ak 2] = [Nl ]

=1

and hence,
k

HA_Z)\iPiH < |Ae41] VEeN.
i=1

Since Ag+1 — 0 as k — oo (cf. Theorem 4.1.8), we obtain

A= i AP
=1

This completes the proof. I
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Corollary 4.4.5 Let A be a compact self adjoint operator. Then
there exists a sequence (By,) of self adjoint finite rank operators such
that

|A—Bp|| =0 as n— oo.

Proof. Follows from Theorem 4.4.4. 1

Recall that in obtaining Theorem 4.4.4, one of the primary fact
about a nonzero compact self adjoint operator that we used is that it
has a nonzero eigenvalue. We know that this fact need not be true for
a non-self adjoint compact operator (cf. Exmaple 4.1.5). However,
we do have a representation similar to the one as in Theorem 4.4.4
for any compact operator on a Hilbert space, in terms of the so called
singular values.

Theorem 4.4.6 (Singular value representation) Let X and Y
Hilbert spaces and T : X — Y be a compact operator. Then there
exist a orthonormal basis {u, : n € A} for N(T)*, an orthonormal
basis {vy, : n € A} for R(T) and {sp : n € A} C [0,00) such that

Tx = an<x,un>vn VreX,
neA

where A = {1,...,k} for some k € N if k = rank (T") < oo, and
A =N jfrank (T') = cc.

Proof. Note that T*T is a compact self adjoint operator so that
by Theorem 4.4.4, there exists an orthonormal set {u, : n € A} in
X and {m, :n € A} C[0,00)

T"Tx = Z P (X, Up YUy, x € X,
neA

where A = {1,...,k} for some k € N or if k = rank (T") < oo, and
A =N if rank (T') = co. Also, we know that, if A = N, then p, — 0
as n — oo. Note that

T*Tu, = ppu, Vn e A.
Hence,

fin = {fintin, Un) = (T* Ty, tp) = (T, Tup) = || Tuy||? > 0.
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Taking
T
Sp = +/ttn and v, = il Vn €A,

Sn

we have
Tu, = sp,v, and T*v, =s,u, Vn € A.
We also know that
(xup) =0 VYneA = T"Te=0 = 2 N(T"T) = N(T)

so that {u, : n € A} is an orthonormal basis of N(T')*. Also, for
every r € X,

(T, vn) = (x, T vy) = (z, Spupn) = Sp{x, uy)
so that
(Tr,v,) =0 VneA = (z,u,)=0 VneN
— ze€NT) = Tx=0.

Hence, {v, : n € A} is an orthonormal basis of R(T). Therefore, for
every ¢ € X,

Tx = Z(Tx,vn>vn = Z(m,T*vn>vn = Z Sn T, U ) Uy,

neN neA neA

This completes the proof. I

Corollary 4.4.7 Let X and Y Hilbert spaces and T : X — Y be
a compact operator of infinite rank. Then there exists sequence of
finite rank bounded operators T, such that |T —T,|| — 0 as n — oo.
In fact,

n
Thx = Zsj<x,uj>vj Vo e X,
j=1

where {(sp, Un,vy) : 1 € N} is as in Theorem 4.4.6, and

HT - TnH < sup ;.
>n

If sy, Uy, v, are as in Theorem 4.4.6, then we have

Tu, = S,Un, T*vy,, = Splin.
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Definition 4.4.2 Let T € K(X), where X is a Hilbert space. The
set

{(Snyun,vp) :n € A}

obtained as in Theorem 4.4.6 is called a singular system for A. The
numbers s, are called the singular values of A with corresponding
singular vectors u,, v, for n € A. O

Let X be a Hilbert space and T € IC(X) be of finite rank, say
rank (7') = k. Then, by Theorem 4.4.6,

k

Tr = an<x7un>vn, reX,
=1

where {(sp,un,vn) : n = 1,...,k} a singular system for A. Let us
consider the operators

U:X K, B:K>5KF V:K'oyvy,

defined by
Uz = Z(:ﬂ,uﬁei,

=1

k k
B (Z aiei> = Z%‘Siei,
=1 1=1
k k
|4 <Z oziei) == Z V5.
=1 =1

Then we have

T =VBU.
If X =K" and Y = K™, then we see that U, B,V are the matrices

U=ujuy ---wy), B=diag(si,...,st), V =[vjvy - 1]"

In this special case, the representation T' = V BU is called the sin-
gular value decomposition of T

Remark 4.4.1 Singular value decomposition of operators is effec-
tively used in the solution of ill-posed operator equations which are
mathematical formulations of many of the practically important in-
verse problems (cf. Nair [6]). O
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Problems
Prove Theorem 4.1.2.

. In Example 4.1.2. Let X = ¢ with ||-||, and A\, =1/n, n € N.

Show that A is bijective, but 0 € oupp(A).
In Example 4.2.4, show that o,pp(A) = [a, b].

Let ty,...,t, be distinct points in [a, b]. Construct u € C|a, b]
such that if A is the operator as in Example 4.2.4, then ocig(A) =

{tla s atn}

Let (A,) be a bounded sequence of scalars and for 1 < p < oo,
let A:¢P — fP be defined by

(Az)(j4) = Njz(j),  JeEN, z el
Prove that

Oeig(A) ={An:neN} and o(A)=cl{\,: neN}
For 1 < p < 00, let A be the right shift operator on £, that is,
Az = (0,2(1),2(2),...), x = (x(1),2(2),...) € .

Prove that
Oeig(A) =@ and o(4)={AeK: [N\ <1}

For 1 < p < 00, let A be the right shift operator on ¢, that is,

Az = (0,2(1),2(2),z(3),...), x = (x(1),2(2),...) € P.
Prove that
Oeig(A) ={ e K: [\ <1} and o(4)={reK: |} <1}
For 1 < p < o0, let A be the left shift operator on ¢P, that is,

Az = (2(2),z(3),...), z:= (z(1),x(2),...) € .

Prove that

Oeig(A) ={ e K: [\ <1} and o(4)={reK: |} <1}
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10.

11.

12.

13.

14.

15.

Spectral Results

Give an example in each of the following:

(a) An operator A : R? — R? such that o(4) = @.
(b) An operator A : R? — R? such that r,(A) < ||A].

For 1 <p<oo,let X =P and A : P — (P be defined by

) ="Y  jen, ser.

J
What are ocig(A), oapp(A) and o(A)? Why?

Let X = Cla,b] with |- ||oc and let u € Ca,b]. Let A: X — X
be defined by

(Ax)(t) = u(t)x(t), t€lab], zelX.
Prove that oapp(A) = cl{u(t) : t € [a,b]}.

Let A € B(X), where X is a Hilbert space. Prove that A €
Oeig(A) if and only if R(A* — AI) not dense.

Let A € B(X), where X is a Hilbert space, and let 0(A) # @
and p € K. Prove the following:
(a) o(A—pl)={A—p:Aeo(A)}.
1

(b) If 41 € p(A), then o((A — puI)™1) = {m e a(A)}.

(c) If A is a normal operator and u € p(A), then

ro((A—pl)™") = dist(ula(A))'

Let A be a compact operator on a Hilbert space and 0 # A\ € K.
Without using Riesz lemma prove that N(A — AI) is finite
dimensional.

For A € B(X), prove that ||A]|? = r,(A*A).



