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Spectral Results

4.1 Eigen Spectrum and Approximate Eigen
Spectrum

Let X be a linear space and A : X → X be a linear operator. We
recall the following definition from linear algebra.

Definition 4.1.1 A scalar λ is an eigenvalue of A if there exists a
nonzero x ∈ X such that

Ax = λx,

and in that case x is called an eigenvector of A corresponding to
the eigenvalue λ. The set of all eigenvalues of A is called the eigen
spectrum of A and it is denoted by σeig(A). ♦

Thus, λ is an eigenvalue of A if and only if A−λI is not one–one.

• λ is an eigenvalue of A if and only if N(A− λI) is non-trivial,
and in that case every nonzero vector in N(A−λI) is an eigen-
vector corresponding to the eigenvalue λ.

Theorem 4.1.1 Let X be a linear space and A : X → X be a linear
operator.

(i) If λ1, . . . , λn are distinct eigenvalues of A with corresponding
eigenvectors x1, . . . , xn, then {x1, . . . , xn} is a linearly indepen-
dent set.

(ii) If R(A) is finite dimensional, then σeig(A) is a finite set.

Proof. (i) This result is normally proved in a course in linear
algebra, and hence its proof is left as an exercise.
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134 Spectral Results

(ii) Suppose σeig(A) is an infinite set. Let (λn) be a sequence
in σeig(A) consisting of distinct nonzero terms, and for each n ∈ N,
let xn be an eigenvector corresponding to the eigenvalue λn. By (i),
{xn : n ∈ N} is linearly independent. Since Axn = λnxn for all
n ∈ N, it follows that

{xn : n ∈ N} ⊆ R(A)

and hence, R(A) is infinite dimensional. Thus, (ii) is proved.

Remark 4.1.1 If X is finite dimensional, and if [A]E is the matrix
representation of A with respect to a basis E of X, then σeig(A) is
the set of all eigenvalues of [A]E . ♦

Example 4.1.1 Let X = C[a, b] with ‖ ·‖∞ and let u ∈ C[a, b]. Let
A : X → X be defined by

(Ax)(t) = u(t)x(t), t ∈ [a, b], x ∈ X.

Clearly, A ∈ B(X). For x ∈ C[a, b] and λ ∈ K,

Ax = λx ⇐⇒ (u(t)− λ)x(t) = 0 ∀ t ∈ [a, b].

Thus, λ ∈ σeig(A) if and only if there exists an interval Iλ ⊆ [a, b]
such that u(t) = λ for all t ∈ Iλ. In particular:

If u is not a constant function on any subinterval of [a, b],
then σeig(A) = ∅.

�

Example 4.1.2 Let X be c00 or `p. Let (λn) be a sequence of
scalars and A : X → X be defined by

(Ax)(j) = λjx(j), j ∈ N, x ∈ X.

Then we have
Aen = λnen ∀n ∈ N.

Also, for λ ∈ K and for a nonzero x ∈ X,

Ax = λx ⇐⇒ λ ∈ {λn : n ∈ N}.

Thus,
σeig(A) = {λn : n ∈ N}.

�
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In the last example, if λ 6∈ {λn : n ∈ N}, but if λ is a limit point
of {λn : n ∈ N}, then there exists a subsequence of (λn), say (λkn)
which converges to λ, and in that case, taking the `p-norm, we have

‖Aekn − λekn‖p ≤ ‖Aekn − λknekn‖p + |λkn − λ|
= |λkn − λ| → 0 as n→∞.

Definition 4.1.2 Let X be a normed linear space and A : X → X be
a linear operator. A scalar λ is called an approximate eigenvalue
of A if there exists (xn) in X such that ‖xn‖ = 1 for every n ∈ N
and

‖Axn − λxn‖ → 0 as n→∞.

The set of all approximate eigenvalues of A is called the approxi-
mate eigen spectrum of A and it is denoted by σapp(A). ♦

Clearly,
σeig(A) ⊆ σapp(A).

The proof of the following theorem is easy and hence it is left as an
exercise.

Theorem 4.1.2 If A is a linear operator on a normed linear spaceX
and λ ∈ K, then

λ ∈ σapp(A) ⇐⇒ A− λI is not bounded below.

Proof. Exercise.

As a consequence of the above theorem, we have:

• λ ∈ σapp(A) implies A− λI does not have a bounded inverse.

Thus, if λ ∈ σapp(A), then even if the operator equation

Ax− λx = y

has a unique solution for a given y ∈ X, the solution does not depend
continuously on the data y.

To see this, suppose λ ∈ σapp(A) and y ∈ R(A− λI). Let x ∈ X
be such that Ax − λx = y, and let (un) be such that ‖un‖ = 1 for
every n ∈ N and ‖Aun − λun‖ → 0. Then taking

vn = Aun − λun, yn = y + vn and xn = x+ un,
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we have
Axn − λxn = yn

for every n ∈ N. Note that

‖y − yn‖ → 0 but ‖x− xn‖ = 1 ∀n ∈ N.

Example 4.1.3 Let X be c00 or `p with ‖ · ‖p and A be as in
Example 4.1.2, i.e.,

(Ax)(j) = λjx(j), j ∈ N, x ∈ X,

where (λn) be a sequence of scalars. Let Λ := {λn : n ∈ N}. We
show that

σapp(A) = cl Λ.

We have already seen that cl Λ ⊆ σapp(A) (see the discussion preced-
ing Definition 4.1.2). To see the reverse inclusion, let λ ∈ K \ cl Λ.
Then, for every x ∈ X and j ∈ N, we have

|(Ax)(j)− λx(j)| = |λ− λj | |x(j)| ≥ d|x(j)|,

where d := dist (λ,Λ). Thus,

‖Ax− λx‖ ≥ d‖x‖ ∀x ∈ X.

Consequently, λ 6∈ σapp(A). �

In view of Example 4.1.3, we can state:

• Limit of a sequence of eigenvalues need not be an eigenvalue.

But, limit of a sequence of eigenvalues is always an approximate
eigenvalue as the following theorem shows.

Theorem 4.1.3 Let X be a normed linear space and A : X → X be
a linear operator. Then

clσeig(A) ⊆ σapp(A).

Proof. We have already observed that σeig(A) ⊆ σapp(A). Now,
let (λn) is a sequence of eigenvalues of A which converges to λ. Let
xn ∈ X be such that ‖xn‖ = 1 and Axn = λnxn for every n ∈ N.
Then

‖Axn − λxn‖ ≤ ‖Axn − λnxn‖+ |λn − λ|
= |λn − λ| → 0 as n→∞.

Thus, λ ∈ σapp(A).



Eigen Spectrum and Approximate Eigen Spectrum 137

In fact, the last theorem is a consequence of the following theorem
as well.

Theorem 4.1.4 Let A be a linear operator on a normed linear
spaceX. Then σapp(A) is a closed set.

Proof. Let (λn) be a sequence in σapp(A) such that λn → λ for
some λ ∈ K. Note that, for every x ∈ X,

‖Ax− λnx‖ = ‖(Ax− λx) + (λ− λn)x‖
≥ ‖Ax− λx‖ − |λ− λn| ‖x‖

for every n ∈ N. Assume for a moment that λ 6∈ σapp(A). Then
there exists c > 0 such that

‖Ax− λx‖ ≥ c‖x‖ ∀x ∈ X.

Hence, for k ∈ N with |λ− λk| < c/2, we have

‖Ax− λkx‖ ≥
c

2
‖x‖ ∀x ∈ X.

This is a contradiction to the fact that λk ∈ σapp(A).

Theorem 4.1.5 If A ∈ B(X), then

σapp(A) ⊆ {λ ∈ K : |λ| ≤ ‖A‖}.

Proof. Let λ ∈ σapp(A). Let (xn) in X be such that ‖xn‖ = 1 for
every n ∈ N and ‖Axn − λxn‖ → 0. Then, for every n ∈ N, we have

|λ| = ‖λxn‖ = ‖Axn − (Axn − λxn)‖ ≤ ‖A‖+ ‖Axn − λxn‖.

Thus, |λ| ≤ ‖A‖ + ‖Axn − λxn‖ for every n ∈ N. Letting n → ∞,
we obtain |λ| ≤ ‖A‖.

Another proof. Let λ ∈ K be such that |λ| > ‖A‖. Then, for
every x ∈ X,

‖Ax− λx‖ ≥ ‖λx‖ − ‖Ax‖ ≥ (|λ| − ‖A‖)‖x‖.

Hence, A − λI is bounded below so that λ 6∈ σapp(A). Therefore, if
λ ∈ σapp(A), then |λ| ≤ ‖A‖.

Combining Theorems 4.1.4 and 4.1.5, we obtain the following.
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Corollary 4.1.6 If A ∈ B(X), then σapp(A) is a compact set.

Example 4.1.4 Consider the operator A in Example 4.1.1, i.e.,
X = C[a, b] with ‖ · ‖∞ and A : X → X is defined by

(Ax)(t) = u(t)x(t), t ∈ [a, b], x ∈ X,

where u ∈ C[a, b]. We have seen that σeig(A) = ∅. Now, we show
that

σapp(A) = cl {u(t) : t ∈ [a, b]}.

For this, first let λ 6∈ clS, where S = {u(t) : t ∈ [a, b]}. Then,
d := inf{|λ− µ| : µ ∈ S} > 0 so that we obtain

‖Ax− λx‖∞ ≥ d‖x‖∞ ∀x ∈ C[a, b].

Hence, σapp(A) ⊆ clS.
To obtain the reverse inclusion, by the closedness of σapp(A), it

is enough to prove S ⊆ σapp(A). So, let λ ∈ S and t0 ∈ [a, b] be
such that u(t0) = λ. For each n ∈ N, let In be an open interval
containing λ such that its length is less than 1/n. Since u ∈ C[a, b],
there exists an interval Jn ⊆ [a, b] containing t0 such that u(Jn) ⊆ In.
Let xn ∈ C[a, b] be such that ‖xn‖∞ = 1 and xn(t) = 0 for t 6∈ Jn.
Then we have

‖Axn − λxn‖∞ = sup
t∈Jn
|u(t)− λ| |xn(t)| ≤ sup

t∈Jn
|u(t)− λ| ≤ 1

n
→ 0.

Thus, S ⊆ σapp(A). Thus, we have shown that σapp(A) = clS. �

Next we show some nice properties of the approximate eigenspec-
tra of compact operators. Before that, we prove the following lemma
which will be used subsequently.

Lemma 4.1.7 (Riesz lemma) Let X be a normed linear space, X0

be a proper closed subspace of X and 0 < r < 1. Then there exists
xr ∈ X such that

‖xr‖ = 1 and dist (xr, X0) ≥ r.

Proof. Since X0 is a proper closed subspace of X, there exists
x ∈ X \ X0 such that d := dist (x,X0) > 0. Since d/r > d, there
exists u ∈ X0 such that ‖u− x‖ ≤ d/r. Let

xr =
x− u
‖x− u‖

.
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Then ‖xr‖ = 1 and

dist (xr, X0) =
dist (x,X0)

‖x− u‖
≥ d

d/r
= r.

This completes the proof.

Theorem 4.1.8 Let A ∈ K(X). Then the following hold.

(i) σapp(A) \ {0} = σeig(A) \ {0},

(ii) N(A−λI) is finite dimensional for every nonzero λ ∈ σeig(A).

(iii) 0 is the only possible limit point of σeig(A), and σeig(A) is a
countable set.

Proof. (i) Its enough to prove that σapp(A) \ {0} ⊆ σeig(A) \ {0}.
So, let λ ∈ σapp(A) \ {0} and let (xn) in X such that ‖xn‖ = 1 for
every n ∈ N and ‖Axn − λxn‖ → 0 as n→∞. Since A is a compact
operator, there exists a subsequence (xkn) such that Axkn → y for
some y ∈ X. Hence,

xkn =
1

λ
[Axkn − (Axkn − λxkn)]→ y

λ

so that we have

Axkn →
Ay

λ
.

Since Axkn → y, we obtain Ay = λy. Also, y 6= 0, since ‖xkn‖ = 1
and λ 6= 0. Thus, we have proved that λ ∈ σeig(A).

(ii) Let λ be a nonzero eigenvalue of A. Suppose N(A − λI) is
infinite dimensional. Let {xn : n ∈ N} be a linearly independent
subset of N(A− λI). Let X0 = {0} and for n ∈ N, let

Xn := span {x1, . . . , xn}.

Since {xn : n ∈ N} is linearly independent, by Riesz lemma (Lemma
4.1.7), for each n ∈ N, there exists un ∈ Xn such that

‖un‖ = 1 and dist (un, Xn−1) ≥ 1

2
.

Note that for n,m ∈ N with n > m, um ∈ Xn−1 and

‖Aun −Aum‖ = ‖λ(un − um)‖ ≥ |λ|
2
.
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Thus, (Aun) does not have a Cauchy subsequence so that (Aun) does
not have a convergent subsequence.

(iii) For r > 0, let

∆r := {λ ∈ σeig(A) : |λ| ≥ r}.

It is enough to prove that prove that ∆r is a finite set (Why?).
Assume for a moment that ∆r is an infinite set for some r > 0. Let
(λn) be a sequence of distinct elements from ∆r. For each n ∈ N, let
xn be an eigen vector of A corresponding to the eigenvalue λn. Let
X0 = {0} and for n ∈ N, let

Xn := span {x1, . . . , xn}.

Since {xn : n ∈ N} is linearly independent, by Riesz lemma (Lemma
4.1.7), for each n ∈ N, there exists un ∈ Xn such that

‖un‖ = 1 and dist (un, Xn−1) ≥ 1

2
.

Note that for n,m ∈ N with n > m,

Aun −Aum = λnun + (Aun − λnun)−Aum,

where

Aun − λnun ∈ Xn−1 and Aum ∈ Xn−1.

Hence,

‖Aun −Aum‖ ≥ dist (λnun, Xn−1) = |λn|dist (un, Xn−1) ≥ r

2
.

Thus, (Aun) does not have a Cauchy subsequence so that (Aun) does
not have a convergent subsequence.

By the very nature of a compact operator, it is clear that if X is
infinite dimensional and A ∈ K(X), then

0 ∈ σapp(S).

In view of Theorem 4.1.8, one may enquire whether every compact
operator has an eigenvalue. The answer is, in general, not in affir-
mative as the following example shows.
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Example 4.1.5 Let X = L2[a, b] and

(Ax)(s) =

∫ s

a
x(t) dt, x ∈ L2[a, b].

Recall from Example 2.4.4 that A is a compact operator.
Now, let λ ∈ K and x ∈ L2[a, b] be such that Ax = λx. Then we

have

λx(s) =

∫ s

a
x(t) dt, for almost all s ∈ [a, b].

Recall from fundamental theorem of Lebesgue integration, that for
u ∈ L2[a, b], if

v(s) =

∫ s

a
u(t) dt, s ∈ [a, b],

then v is absolutely continuous, and v′ = u almost everywhere. Thus,
if λ = 0, then x = 0, and if λ 6= 0, then x is absolutely continuous,
x(a) = 0 and

x′(s) =
x(s)

λ
a.e.,

so that, in this case also, we obtain x = 0. Thus, A does not have
any eigenvalue. �

4.2 Resolvent Set and Spectrum

Throughout this chapter, we assume that X is a normed linear
space and A : X → X is a linear operator. For deriving interest-
ing and important results, we shall assume further properties on X
and A.

Definition 4.2.1 The set of all λ ∈ K such that A− λI is bijective
and (A−λI)−1 is continuous is called the resolvent set of A, and it
is denoted by ρ(A). The compliment of ρ(A) is called the spectrum
of A, and it is denoted by σ(A). ♦

Thus, for λ ∈ K,

λ ∈ ρ(A) ⇐⇒ A− λI is bijective and (A− λI)−1 ∈ B(X),

λ ∈ σ(A) ⇐⇒ λ 6∈ ρ(A).

The following theorem is an immediate consequence of bounded
inverse theorem (Corollary 3.1.8).
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Theorem 4.2.1 If X is a Banach space and A ∈ B(X), then

σ(A) = {λ ∈ K : A− λI is not bijective }.

Theorem 4.2.2 Let X be a Banach space and A ∈ B(X). Then

σ(A) = σapp(A) ∪ σcom(A),

where σcom(A), called the compression spectrum of A, is the set
all those λ ∈ K such that R(A− λI) not dense in X.

Proof. Clearly,

σapp(A) ∪ σcom(A) ⊆ σ(A).

Next, let λ 6∈ σapp(A)∪σcom(A). Then A−λI is bounded below and
R(A − λI) is dense. Hence, A − λI is bijective so that by Theorem
4.2.1,

σ(A) ⊆ σapp(A) ∪ σcom(A).

This completes the proof.

Clearly
σeig(A) ⊆ σapp(A) ⊆ σ(A).

We have already seen the case where the first inclusion above is
strict. The following example shows that the second inclusion also
can be strict.

Example 4.2.1 Let X = c00 with `p-norm and A be the right shift
operator, that is,

(Ax)(i) =

{
0, i = 1,
x(i− 1), i 6= 1.

Then ‖Ax‖ ≥ ‖x‖ for all x ∈ X and e1 6∈ R(A). Thus,

0 ∈ σ(A) \ σapp(A).

Also, for any λ ∈ K with |λ| < 1, we have

‖Ax− λx‖ ≥ ‖Ax‖ − ‖λx‖ ≥ (1− |λ|)‖x‖ ∀x ∈ X,

and we see that e1 6∈ R(A− λI) so that

{λ ∈ K : |λ| < 1} ⊆ σ(A) \ σapp(A).
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We shall see in Example 4.2.3 that, for this operator A,

σ(A) = {λ ∈ K : |λ| ≤ 1} and σapp(A) = {λ ∈ K : |λ| = 1}.

�

Example 4.2.2 Let X be c00 or `p with ‖ · ‖p and A be as in
Example 4.1.3, i.e.,

(Ax)(j) = λjx(j), j ∈ N, x ∈ X,

where (λn) be a sequence of scalars. We have seen that

σeig(A) = Λ and σapp(A) = cl Λ,

where Λ := {λn : n ∈ N}. Thus, cl Λ ⊆ σ(A). Now, we show that

σ(A) = cl Λ.

Let λ 6∈ cl Λ. We know that A−λI is one-one. For y ∈ X, let x ∈ X
be defined by

x(j) =
y(j)

λj − λ
∀j ∈ N.

Since |λj − λ| ≥ d := dist (λ, cl Λ), x ∈ X, and Ax− λx = y so that
A− λI is onto as well. Further,

‖(A− λI)−1y‖ = ‖x‖ ≤ ‖y‖
d

so that (A − λI)−1 is a bounded operator. Thus, σ(A) ⊆ cl Λ, and
we have completed the proof of σ(A) = cl Λ. �

We have seen that σapp(A) is a closed set, and if A ∈ B(X), then
σapp(A) ⊆ {λ ∈ K : |λ| ≤ ‖A‖}. Now, we show that these results
hold for σ(A) whenever X is a Banach space.

Theorem 4.2.3 Let X be a Banach space and A ∈ B(X). Then the
following hold.

(i) σ(A) is a bounded set. More precisely,

σ(A) ⊆ {λ ∈ K : |λ| ≤ ‖A‖}.

(ii) ρ(A) is an open set. More precisely, for each λ0 ∈ ρ(A),

{λ ∈ K : |λ− λ0| < 1/‖(A− λ0I)−1‖} ⊆ ρ(A).
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In particular, σ(A) is a compact subset of K.

Proof. (i) Let ∈ K be such that |λ| > ‖A‖. Then, for every
x ∈ X,

‖(A− λI)x‖ ≥ ‖λx‖ − ‖Ax‖ ≥ (|λ| − ‖A‖)‖x‖.

From this, it follows that A−λI is one–one, R(A−λI) is closed and
A− λI has a continuous inverse from its range. Hence, to complete
the proof of (i), using Theorem 4.2.1, it is enough to prove that
R(A − λI) = X. Suppose this is not true. Then, by a consequence
of Hahn Banach theorem (see Corollary 3.2.3 ), there exists f ∈ X ′
such that ‖f‖ = 1 and f(y) = 0 for all y ∈ R(A−λI). In particular,
f(Ax− λx) = 0 for all x ∈ X. Hence,

|λ| ‖x‖ = ‖λx‖ = ‖f(Ax)‖ ≤ ‖f‖ ‖A‖ ‖x‖ = ‖A‖ ‖x‖ ∀x ∈ X.

Thus,
(|λ| − ‖A‖)‖x‖ = 0 ∀x ∈ X.

This is a contradiction, since |λ| > ‖A‖. Thus, |λ| > ‖A‖ implies
A− λI is bijective.

(ii) Let λ0 ∈ ρ(A) and λ ∈ K be such that

|λ− λ0| < 1/‖(A− λ0I)−1‖.

Since,

A− λI = (A− λ0I)− (λ− λ0)I

= [I − (λ− λ0)(A− λ0I)−1](A− λ0I),

by (i) and Theorem 4.2.1, λ ∈ ρ(A). Thus,

{λ ∈ K : |λ− λ0| <
1

‖(A− λ0I)−1‖
} ⊆ ρ(A).

Hence, ρ(A) is an open set and consequently, σ(A) is a closed set.
By (i) and (ii), σ(A) is a compact subset of K.

Corollary 4.2.4 Let X be a Banach space and A ∈ B(X). Then

σ(A) ⊆
∞⋂
n=1

{λ ∈ K : |λ| ≤ ‖An‖1/n}.
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Proof. It is enough to show that

∞⋃
n=1

{λ ∈ K : |λ|n > ‖An‖} ⊆ ρ(A).

So, let λ ∈ K is such that |λ|n > ‖An‖ for some n ∈ N. Note that

An − λnI = (A− λI)
n∑
j=1

λj−1An−j =
[ n∑
j=1

λj−1An−j
]
(A− λI)

By Theorem 4.2.3(i), An − λnI is bijective. Hence, from the above
equalities, A−λI is bijective. Since X is a Banach space, by Theorem
4.2.1, λ ∈ ρ(A).

Definition 4.2.2 Let A ∈ B(X). Then the number

rσ(A) := sup{|λ| : λ ∈ σ(A)}

is called the spectral radius of A. ♦

By Corollary 4.2.4, if X is a Banach space and A ∈ B(X), then

rσ(A) ≤ inf
n∈N
‖An‖1/n.

In fact, we have the following theorem. We omit its proof. Inter-
ested reader may see the proof in [5].

Theorem 4.2.5 (Gelfand–Mazur Theorem) Let X be a Banach
space over the complex field C and A ∈ B(X). Then

(i) (Gelfand–Mazur Theorem) σ(A) is nonempty,

(ii) (Spectral radius formula) lim
n→∞

‖An‖1/n exists and

rσ(A) = lim
n→∞

‖An‖1/n.

Theorem 4.2.6 Let X be a Banach space and A ∈ B(X). Then,
every boundary point of σ(A) is an approximate eigenvalue of A.
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Proof. Let λ be a boundary point of σ(A). Then λ ∈ σ(A) and
there exists a sequence (µn) in ρ(A) such that µn → λ. Suppose
λ 6∈ σapp(A), and let c > 0 be such that

‖Ax− λx‖ ≥ c‖x‖ ∀x ∈ X.

Let N ∈ N be such that |λ− µN | < c/2. Then, we have

‖Ax− µNx‖ = ‖(Ax− λx)− (µN − λ)x‖
≥ ‖Ax− λx‖ − |µN − λ|‖x‖
≥ (c− |µN − λ|)‖x‖

>
c

2
‖x‖

Hence,

‖(A− µNI)−1‖ < 2

c

so that
‖(λ− µN )(A− µNI)−1‖ < 1.

Therefore, by Theorem 4.2.3(ii), λ ∈ ρ(A). This is a contradiction
to the fact that λ ∈ σ(A).

Example 4.2.3 Consider the Example 4.2.1. We show that

σ(A) = {λ ∈ K : |λ| ≤ 1} and σapp(A) = {λ ∈ K : |λ| = 1}.

We have seen that

{λ ∈ K : |λ| < 1} ⊆ σ(A) \ σapp(A).

It can also be seen that ‖A‖ ≤ 1. Thus,

{λ ∈ K : |λ| < 1} ⊆ σ(A) ⊆ {λ ∈ K : |λ| ≤ 1}.

Hence, by the closedness of σ(A), σ(A) = {λ ∈ K : |λ| ≤ 1}.
The above observations together with Theorem 4.2.6 imply that
σapp(A) = {λ ∈ K : |λ| = 1}. �

Example 4.2.4 Let X = C[a, b] with ‖ ·‖∞ and let u ∈ C[a, b]. Let
A : X → X be defined by

(Ax)(t) = u(t)x(t), t ∈ [a, b], x ∈ X.
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Clearly, A ∈ B(X). We show that

σ(A) = clS,

where S := {u(t) : t ∈ [a, b]}. Recall from Example 4.1.4 that
σapp(A) = clS. Hence, it is enough to show that σ(A) ⊆ clS.

Suppose λ 6∈ clS. Then A − λI is one-one. Also, for every
y ∈ C[a, b], the function x ∈ C[a, b] defined by

x(t) =
y(t)

u(t)− λ
, t ∈ [a, b],

satisfies the equation Ax− λx = y. Thus, for all λ 6∈ clS, A− λI is
bijective. Since X is a Banach space, by Theorem 4.2.1, σ(A) ⊆ S.
Thus, we have proved that σ(A) = clS. �

4.3 Spectral Results for Self Adjoint, Normal
and Unitary Operators

We know from linear algebra that if A is a self adjoint operator on
a finite dimensional inner product space, then its eigen spectrum
is nonempty finite set of real numbers, irrespective of whether the
scalar field is R or C. One may wonder whether the same can be said
about the spectrum of a self adjoint operator on a (possibly infinite
dimensional) Hilbert space. Yes, we can. We shall move towards the
justification of this claim.

Throughout this section, we consider X to be a Hilbert space and
A ∈ B(X). Recall that A is

• self-adjoint if A∗ = A,

• normal if A∗A = AA∗, and

• unitary if A∗A = I = AA∗.

We shall make use of the following easily verifiable result.

Lemma 4.3.1 Let A ∈ B(X). Then

R(A)⊥ = N(A∗).

Theorem 4.3.2 Let A ∈ B(X) and λ ∈ K. Then

R(A− λI) is dense in X if and only if λ̄ 6∈ σeig(A∗).
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Proof. We note that for ∈ K, (A − λI)∗ = A∗ − λ̄I. Hence, by
Lemma 4.3.1, replacing A by A− λI, we obtain

λ̄ 6∈ σeig(A∗) ⇐⇒ N(A∗ − λ̄I) = {0}
⇐⇒ R(A− λI)⊥ = {0}
⇐⇒ R(A− λI) dense in X.

The last equivalence is a consequence of projection theorem. This
competes the proof.

In view of the aove theorem together with Theorem 4.2.2, we have
the following corollary.

Corollary 4.3.3 Let A ∈ B(X). Then

σ(A) = σapp(A) ∪ {λ ∈ K : λ̄ ∈ σeig(A∗)}.

Clearly, if A is self adjoint, then

σeig(A) ⊆ R.

We, in fact, have the following.

Theorem 4.3.4 Let A be a self-adjoint operator. Then

σ(A) ⊆ R.

Proof. If K = R, then there is nothing to prove. Hence, assume
that K = C. Let λ = α+ iβ with α, β ∈ R with β 6= 0. It is enough
to show that λ ∈ ρ(A). For this first we note that, for every x ∈ X,

‖Ax− λx‖2 = 〈(A− αI)x+ iβx, (A− αI)x+ iβx〉
= ‖(A− αI)x‖2 + |β|2‖x‖2.

To obtain the above, we used the fact that

〈(A− αI)x, βx〉 = 〈βx, (A− αI)x〉.

Thus, A− λI is bounded below, so that it is one-one and R(A− λI)
is closed. Similarly, A− λ̄I is also one-one. Hence, by Lemma 4.3.1,

[R(A− λI)]⊥ = N(A∗ − λ̄I) = N(A− λ̄I) = {0}.

Consequently, R(A− λI) is dense in X, so that by the closedness of
R(A− λI), A− λI is onto.
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For normal operators we have the following.

Theorem 4.3.5 Let A be a normal operator and λ ∈ K. Then

(i) For x ∈ X, Ax = λx ⇐⇒ A∗x = λ̄x. In particular,

λ ∈ σeig(A) ⇐⇒ λ̄ ∈ σeig(A∗).

(ii) λ, µ ∈ K, λ 6= µ =⇒ N(A− λI) ⊥ N(A− µI).

(iii) σ(A) = σapp(A).

Proof. Let x ∈ X and λ ∈ K. Then, using the fact that A is
normal, we have

‖Ax− λx‖2 = 〈(A− λI)x, (A− λI)x〉
= 〈x, (A∗ − λ̄I)(A− λI)x〉
= 〈x, (A− λI)(A∗ − λ̄I)x〉
= 〈(A∗ − λ̄I)x, (A∗ − λ̄I)x〉
= ‖A∗x− λ̄x‖2.

From this, (i) follows.

Now, let λ, µ ∈ K such that λ 6= µ. Let x ∈ N(A − λI) and
y ∈ N(A− µI). Then, using (i), we have

λ〈x, y〉 = 〈λx, y〉 = 〈Ax, y〉 = 〈x,A∗y〉 = 〈x, µ̄y〉 = µ〈x, y〉.

Thus, λ 6= µ implies 〈x, y〉 = 0. Thus, (ii) is proved.

Now, (i) and Corollary 4.3.3 imply (iii).

Next result is concerned about the spectra of unitary operators.

Theorem 4.3.6 Let A be a unitary operator and X 6= {0}. Then

σ(A) ⊆ {λ ∈ K : |λ| = 1}.

Further, if σ(A) 6= ∅, then

rσ(A) = 1.
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Proof. Since A∗A = I = AA∗,

‖Ax‖ = ‖x‖ = ‖A∗x‖ ∀x ∈ X.

Hence, ‖A‖ = 1. Now, let λ ∈ K be such that |λ| 6= 1. Then for
every x ∈ X, we have

‖Ax− λx‖ ≥ | ‖Ax‖ − |λ| ‖x‖ | = | 1− |λ| | ‖x‖.

Consequently, by Theorem 4.3.5 (iii), σ(A) ⊆ {λ ∈ K : |λ| = 1}.
The last part follows from the definition of rσ(A).

Definition 4.3.1 For A ∈ B(X), the set

W (A) := {〈Ax, x〉 : ‖x‖ = 1}

is called the numerical range of A, and

rW (A) := sup{|〈Ax, x〉| : ‖x‖ = 1}

is called the numerical radius of A. ♦
Observe:

• A self adjoint =⇒W (A) ⊆ R.

Converse of the above need not be true. For instance, if K = R, then
W (A) ⊆ R even if A is not self adjoint. However, the converse holds
if the scalar field is C (see [5]).

Definition 4.3.2 If W (A) ⊆ [0,∞), then A is called a positive
operator . ♦

Notation 4.3.1 For A ∈ B(X) with W (A) ⊆ R, let us use the
following notations:

αA := inf{〈Ax, x〉 : ‖x‖ = 1},
βA := sup{〈Ax, x〉 : ‖x‖ = 1}.

♦

Theorem 4.3.7 Let A ∈ B(X) be self adjoint. Then

‖A‖ = rW (A) = max{|αA|, |βA|},

and if A is positive self adjoint, then ‖A‖ = βA.
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Proof. Follows from Theorem 2.2.5.

Lemma 4.3.8 Suppose A is a positive self-adjoint operator. Then

βA ∈ σ(A).

In particular, if A is positive self adjoint, then rσ(A) = ‖A‖.

Proof. Let (xn) in X be such that ‖xn‖ = 1 for all n ∈ N and
〈Axn, xn〉 → βA as n→∞. Note that

‖Axn − βAxn‖2 = ‖Axn‖2 − 2βA〈Axn, xn〉+ β2
A

≤ ‖A‖2 − 2βA〈Axn, xn〉+ β2
A.

Since 〈Axn, xn〉 → βA as n → ∞ and βA = ‖A‖ (see Theorem
4.3.7), it follows from the above inequality that ‖Axn − βAxn‖ → 0
as n→∞. Thus, βA ∈ σapp(A) = σ(A).

Theorem 4.3.9 Suppose A is a self-adjoint operator. Then

rσ(A) = ‖A‖.

In particular, there exists λ ∈ σ(A) such that |λ| = ‖A‖.

Proof. In view of Theorem 4.3.7, it is enough to prove that

{αA, βA} ⊆ σ(A).

For this purpose, we may first observe that

B := A− αAI and C := βAI −A

are positive self adjoint operators. Therefore, by what we have
proved in the previous paragraph,

βB ∈ σ(B), βC ∈ σ(C).

But,
βB = sup{〈(A− αAI)x, x〉 : ‖x‖ = 1} = βA − αA,
βC = sup{〈(βAI −A)x, x〉 : ‖x‖ = 1} = βA − αA,

σ(B) = {λ− αA : λ ∈ σ(A)},
σ(C) = {βA − λ : λ ∈ σ(A)}.

Hence, there there exists λ, µ ∈ σ(A) such that

βA − αA = λ− αA βA − αA = βA − µ.

Consequently, βA = λ ∈ σ(A) and αA = µ ∈ σ(A). This completes
the proof of the theorem.
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Corollary 4.3.10 If A ∈ B(X) is a compact self adjoint operator,
then there exists λ ∈ σeig(A) such that |λ| = ‖A‖.

Remark 4.3.1 Theorem 4.3.9, in particular, shows that if A is a self
adjoint operator, then the fact that σ(A) 6= ∅ (cf. Theorem 4.2.5)
holds for a real Hilbert space as well. ♦

By Theorem 4.3.9, if A is a self adjoint operator, then σ(A) 6= ∅.
However, the eigenspectrum can be empty even if A is self adjont as
the following example shows.

Example 4.3.1 Let X = L2[a, b] and

(Ax)(t) = tx(t) for almost all t ∈ [a, b].

Note that A is a self adjoint operator.
Now, for λ ∈ K and x ∈ L2[a, b],

Ax = λx ⇐⇒ (λ− t)x(t) = 0 for almost all t ∈ [a, b]

⇐⇒ x = 0.

Thus, A does not have any eigenvalue. �

Recall from Theorem 4.3.5 (iii) that if A is a normal operator,
then σ(A) = σapp(A). For a general bounded operator, we have the
following result.

Theorem 4.3.11 For A ∈ B(X),

σ(A) = σapp(A) ∪ {λ ∈ K : λ̄ ∈ σeig(A∗).

Proof. By Theorem 4.3.2, for λ ∈ K,

R(A− λI) not dense in X ⇐⇒ λ̄ ∈ σeig(A∗).

Hence, the result is a consequence of Theorem 4.2.2.

4.4 Spectral Representations

Recall from linear algebra that if X is a finite dimensional inner
product space and A : X → X is a self adjoint operator, then A can
be represented as

Ax =

k∑
j=1

λj〈x, uj〉uj , x ∈ X,
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where λ1, . . . , λk are nonzero real numbers and {u1, . . . , uk} is an
orthonormal set in X.

In this section we prove that an analogous representation is possi-
ble if A is a compact self adjoint operator in a general Hilbert space.
Our proof includes the case of finite dimensional case as well.

First, let us recall the following facts about a compact operator
A on a general Banach space (cf. Theorem 4.1.8):

1. Eigen spectrum of A is countable,

2. 0 is the only possible limit point of he eigen spectrum of A,
and

3. Eigen space associated with every nonzero eigenvalue is finite
dimensional.

4. Every nonzero approximate eigenvalue of A is an eigenvalue.

Also for a self adjoint operator A on a Hilbert space A, we know
the following (cf. Theorems 4.3.5 and Corollary 4.3.10):

1. Eigen vectors corresponding to distinct eigenvalues of A are
orthogonal.

2. A has an eigenvalue λ such that |λ| = ‖A‖.

We shall also make use of a few simple-minded lemmas.

Lemma 4.4.1 Let A be a self adjoint operator on a Hilbert space X
and X0 be a closed subspace of X. Then

A(X0) ⊆ X0 ⇐⇒ A(X⊥0 ) ⊆ X⊥0 .

Proof. Suppose A(X0) ⊆ X0. Let x ∈ X⊥0 . Then for every
y ∈ X0, Ay ∈ X0 so that

〈Ax, y〉 = 〈x,Ay〉 = 0.

Thus, A(X⊥0 ) ⊆ X⊥0 . Also, by projection theorem, X⊥⊥0 = X0 so
that from what we have proved,

A(X⊥0 ) ⊆ X⊥0 =⇒ A(X0) = A(X⊥⊥0 ) ⊆ X⊥⊥0 = X0.

This completes the proof.



154 Spectral Results

Definition 4.4.1 Let A be a linear operator on a linear space X. A
subspace X0 of X is said to be invariant under A or an invariant
subspace for A if A(X0) ⊆ X0. ♦

Example 4.4.1 Let A be a linear operator on a linear space X and
let {λ1, . . . , λk} ⊆ K. Then it can be easily seen that

X0 = N(A− λ1I) + . . .+N(A− λkI)

is invariant under A. �

Suppose A is a self adjoint operator on a Hilbert space X and X0

is an invariant subspace for X. Then, by Lemma 4.4.1, X⊥0 is also
invariant under A. Hence, it can be seen that

A1 := A|X0
and A2 := A|

X⊥
0

are self adjoint operators on X0 and X⊥0 , respectively.

Lemma 4.4.2 Let A be a self adjoint operator on a Hilbert space
X and X0 be an invariant subspace for X. Let A1 := A|X0

and
A2 := A|

X⊥
0

. Then

σeig(A) = σeig(A1) ∪ σeig(A2).

Proof. We observe that if x ∈ X and (u, v) ∈ X0 × X⊥0 is such
that x = u + v, then x 6= 0 if and only if atleast one of u and v is
nonzero. Further, using the invariance of X0 and X⊥0 and the fact
that X0 ∩X⊥0 = {0},

Ax = λx ⇐⇒ A1u = λu and A2v = λv.

Thus, it follows that

σeig(A) = σeig(A1) ∪ σeig(A2).

This completes the proof.

Lemma 4.4.3 Let A be a self adjoint operator on a Hilbert space X
and let λ1, . . . , λk be distinct eigenvalues of A. Let

X0 = N(A− λ1I) + . . .+N(A− λkI)

and let A1 := A|X0
and A2 := A|

X⊥
0

. Then
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(i) σeig(A1) = {λ1, . . . , λk},

(ii) σeig(A2) = σeig(A) \ {λ1, . . . , λk}.

Proof. (i) It can be easily seen that {λ1, . . . , λk} ⊆ σeig(A1).
Now, let λ ∈ σeig(A1). Then there exists a nonzero x ∈ X0 such that
Ax = λx. Let xi ∈ N(A− λiI) for i = 1, . . . , k such that

x = x1 + . . .+ xk.

Since N(A− λiI) ⊥ N(A− λjI) for i 6= j, we have

‖x‖2 = ‖x1‖2 + . . .+ ‖xk‖2.

Hence, xi 6= 0 for some i ∈ {1, . . . , k}. Also, since Ax = λx and

Ax− λx = (Ax1 − λx1) + . . .+ (Axk − λxk)
= (λ1 − λ)x1 + . . .+ (λk − λ)xk,

it follows that λ = λi ∈ {λ1, . . . , λk}.
(ii) Let λ ∈ σeig(A) \ {λ1, . . . , λk}. By Lemma 4.4.2, we know

that σeig(A) = σeig(A1) ∪ σeig(A2). Hence, by part (i), we obtain
λ ∈ σ(A2). Next, suppose that λ ∈ σeig(A2). Then there exists a
nonzero x ∈ X⊥0 such that Ax = λx. Then, λ 6∈ {λ1, . . . , λk}, for if
λ = λi for some i ∈ {1, . . . , k}, then we would have Ax = λix so that
x ∈ N(A − λiI) ⊆ X0, which would contradict the fact that x 6= 0.
Thus, we have proved that λ ∈ σeig(A) \ {λ1, . . . , λk} if and only if
λ ∈ σeig(A2).

Now, we state and prove the main theorem of this book, the so
called spectral theorem for a compact self adjoint operator.

Theorem 4.4.4 Let X be a Hilbert space and A : X → X be a
nonzero compact self adjoint operator. Then

A =
∑
i∈Λ

λiPi,

where {λj : j ∈ Λ} is a countable set of real numbers which are the
eigenvalues of A and, for each i ∈ Λ, Pi is the orthogonal projection
onto the eigen space N(A− λiI).



156 Spectral Results

Proof. We know that the eigenspectrum of A is a countable set,
say σeig(A) = {λi : i ∈ Λ}, where Λ = {1, . . . , k} for some k ∈ N if
σeig(A) is a finite set and Λ = N if σeig(A) is an infinite set.

Case (i): σeig(A) is a finite set.
Suppose σeig(A) = {λ1, . . . , λk}, where λ1, . . . , λk are distinct.

We know that each N(A − λiI) is finite dimensional (cf. Theorem
4.1.8). Let {vij : j = 1, . . . , ni} be an orthonormal basis ofN(A−λiI)
for i = 1, . . . , k. By Theorem 4.3.5), N(A − λiI) ⊥ N(A − λjI) for
i 6= j. Hence,

k⋃
i=1

{vij : j = 1, . . . , ni}

is an orthonormal basis of

Xk := N(A− λ1I) + · · ·+N(A− λkI).

By projection theorem, every x ∈ X can be written uniquely as

x = u+ v with u ∈ Xk, v ∈ X⊥k .

Note that

〈x, vij〉 = 〈u, vij〉 ∀ i = 1, . . . , k, j = 1, . . . , ni,

u =

k∑
i=1

ni∑
j=1

〈u, vij〉vij =

k∑
i=1

ni∑
j=1

〈x, vij〉vij

so that

Ax = Au+Av =

k∑
i=1

λiPix+Av,

where Pi is the orthogonal projection onto N(A− λi), i.e.,

Pix =

ni∑
j=1

〈x, vij〉vij , x ∈ X.

Hence, it is enough to prove that Av = 0. Since Xk is invariant
under A, by Theorem 4.4.1, X⊥k is also invariant under A. Therefore,
Ak := A|

X⊥
k

is a compact self adjoint operator on X⊥k . We, in fact,

show that Ak = 0, which would imply that Av = 0.
Suppose Ak 6= 0. Then, by Corollary 4.3.10, Ak will have a

nonzero eigenvalue, say λ, which would be an eigenvalue of A as
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well. Let y ∈ X⊥k be a corresponding eigenvector. Then we have
Ay = λy so that the λ = λi for some i = 1, . . . , k, and hence y ∈
N(A− λiI) ⊆ Xk. This is a contradiction to the fact that y 6= 0.

Case (ii): σeig(A) is an infinite set.
Suppose that λ1, λ2, . . . are the distinct eigenvalues of A. Without

loss of generality assume that |λi| ≥ |λi+1| for every i ∈ N. As earlier,
let

Xk := N(A− λ1I) + · · ·+N(A− λkI).

Let x ∈ X. Again, by projection theorem,

x = u+ v with u ∈ Xk, v ∈ X⊥k

and

Ax =

k∑
i=1

λiPix+Av,

where ‖v‖ ≤ ‖x‖. Hence,

‖Ax−
k∑
i=1

λiPix‖ ≤ ‖Ak‖ ‖x‖,

where Ak := A|
X⊥

k

is a compact self adjoint operator on X⊥k . By

Lemma 4.4.3,

σeig(Ak) = σeig(A) \ {λ1, . . . , λk}.

Hence, ‖Ak‖ = |λk+1| so that

‖Ax−
k∑
i=1

λiPix‖ ≤ ‖Ak‖ ‖x‖ = |λk+1| ‖x‖

and hence,

‖A−
k∑
i=1

λiPi‖ ≤ |λk+1| ∀ k ∈ N.

Since λk+1 → 0 as k →∞ (cf. Theorem 4.1.8), we obtain

A =
∞∑
i=1

λiPi.

This completes the proof.
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Corollary 4.4.5 Let A be a compact self adjoint operator. Then
there exists a sequence (Bn) of self adjoint finite rank operators such
that

‖A−Bn‖ → 0 as n→∞.

Proof. Follows from Theorem 4.4.4.

Recall that in obtaining Theorem 4.4.4, one of the primary fact
about a nonzero compact self adjoint operator that we used is that it
has a nonzero eigenvalue. We know that this fact need not be true for
a non-self adjoint compact operator (cf. Exmaple 4.1.5). However,
we do have a representation similar to the one as in Theorem 4.4.4
for any compact operator on a Hilbert space, in terms of the so called
singular values.

Theorem 4.4.6 (Singular value representation) Let X and Y
Hilbert spaces and T : X → Y be a compact operator. Then there
exist a orthonormal basis {un : n ∈ Λ} for N(T )⊥, an orthonormal
basis {vn : n ∈ Λ} for R(T ) and {sn : n ∈ Λ} ⊆ [0,∞) such that

Tx =
∑
n∈Λ

sn〈x, un〉vn ∀x ∈ X,

where Λ = {1, . . . , k} for some k ∈ N if k = rank (T ) < ∞, and
Λ = N if rank (T ) =∞.

Proof. Note that T ∗T is a compact self adjoint operator so that
by Theorem 4.4.4, there exists an orthonormal set {un : n ∈ Λ} in
X and {mn : n ∈ Λ} ⊆ [0,∞)

T ∗Tx =
∑
n∈Λ

µn〈x, un〉un, x ∈ X,

where Λ = {1, . . . , k} for some k ∈ N or if k = rank (T ) < ∞, and
Λ = N if rank (T ) =∞. Also, we know that, if Λ = N, then µn → 0
as n→∞. Note that

T ∗Tun = µnun ∀n ∈ Λ.

Hence,

µn = 〈µnun, un〉 = 〈T ∗Tun, un〉 = 〈Tun, Tun〉 = ‖Tun‖2 ≥ 0.
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Taking

sn =
√
µn and vn =

Tu

sn
∀n ∈ Λ,

we have

Tun = snvn and T ∗vn = snun ∀n ∈ Λ.

We also know that

〈x, un〉 = 0 ∀n ∈ Λ =⇒ T ∗Tx = 0 =⇒ x ∈ N(T ∗T ) = N(T )

so that {un : n ∈ Λ} is an orthonormal basis of N(T )⊥. Also, for
every x ∈ X,

〈Tx, vn〉 = 〈x, T ∗vn〉 = 〈x, snun〉 = sn〈x, un〉

so that

〈Tx, vn〉 = 0 ∀n ∈ Λ =⇒ 〈x, un〉 = 0 ∀n ∈ N
=⇒ x ∈ N(T ) =⇒ Tx = 0.

Hence, {vn : n ∈ Λ} is an orthonormal basis of R(T ). Therefore, for
every x ∈ X,

Tx =
∑
n∈N
〈Tx, vn〉vn =

∑
n∈Λ

〈x, T ∗vn〉vn =
∑
n∈Λ

sn〈x, un〉vn.

This completes the proof.

Corollary 4.4.7 Let X and Y Hilbert spaces and T : X → Y be
a compact operator of infinite rank. Then there exists sequence of
finite rank bounded operators Tn such that ‖T − Tn‖ → 0 as n→∞.
In fact,

Tnx :=
n∑
j=1

sj〈x, uj〉vj ∀x ∈ X,

where {(sn, un, vn) : n ∈ N} is as in Theorem 4.4.6, and

‖T − Tn‖ ≤ sup
j>n

sj .

If sn, un, vn are as in Theorem 4.4.6, then we have

Tun = snvn, T ∗vn = snun.
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Definition 4.4.2 Let T ∈ K(X), where X is a Hilbert space. The
set

{(sn, un, vn) : n ∈ Λ}

obtained as in Theorem 4.4.6 is called a singular system for A. The
numbers sn are called the singular values of A with corresponding
singular vectors un, vn for n ∈ Λ. ♦

Let X be a Hilbert space and T ∈ K(X) be of finite rank, say
rank (T ) = k. Then, by Theorem 4.4.6,

Tx =

k∑
i=1

sn〈x, un〉vn, x ∈ X,

where {(sn, un, vn) : n = 1, . . . , k} a singular system for A. Let us
consider the operators

U : X → Kk, B : Kk → Kk, V : Kk → Y,

defined by

Ux =
∑
i=1

〈x, ui〉ei,

B

(
k∑
i=1

αiei

)
=

k∑
i=1

αisiei,

V

(
k∑
i=1

αiei

)
=

k∑
i=1

αivi.

Then we have

T = V BU.

If X = Kn and Y = Km, then we see that U,B, V are the matrices

U = [u1 u2 · · · uk], B = diag(s1, . . . , sk), V = [v1 v2 · · · vk]∗.

In this special case, the representation T = V BU is called the sin-
gular value decomposition of T .
Remark 4.4.1 Singular value decomposition of operators is effec-
tively used in the solution of ill-posed operator equations which are
mathematical formulations of many of the practically important in-
verse problems (cf. Nair [6]). ♦
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4.5 Problems

1. Prove Theorem 4.1.2.

2. In Example 4.1.2. Let X = c00 with ‖·‖p and λn = 1/n, n ∈ N.
Show that A is bijective, but 0 ∈ σapp(A).

3. In Example 4.2.4, show that σapp(A) = [a, b].

4. Let t1, . . . , tn be distinct points in [a, b]. Construct u ∈ C[a, b]
such that ifA is the operator as in Example 4.2.4, then σeig(A) =
{t1, . . . , tn}.

5. Let (λn) be a bounded sequence of scalars and for 1 ≤ p ≤ ∞,
let A : `p → `p be defined by

(Ax)(j) = λjx(j), j ∈ N, x ∈ `p.

Prove that

σeig(A) = {λn : n ∈ N} and σ(A) = cl {λn : n ∈ N}.

6. For 1 ≤ p ≤ ∞, let A be the right shift operator on `p, that is,

Ax = (0, x(1), x(2), . . .), x := (x(1), x(2), . . .) ∈ `p.

Prove that

σeig(A) = ∅ and σ(A) = {λ ∈ K : |λ| ≤ 1}.

7. For 1 ≤ p ≤ ∞, let A be the right shift operator on `p, that is,

Ax = (0, x(1), x(2), x(3), . . .), x := (x(1), x(2), . . .) ∈ `p.

Prove that

σeig(A) = {λ ∈ K : |λ| < 1} and σ(A) = {λ ∈ K : |λ| ≤ 1}.

8. For 1 ≤ p ≤ ∞, let A be the left shift operator on `p, that is,

Ax = (x(2), x(3), . . .), x := (x(1), x(2), . . .) ∈ `p.

Prove that

σeig(A) = {λ ∈ K : |λ| < 1} and σ(A) = {λ ∈ K : |λ| ≤ 1}.
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9. Give an example in each of the following:

(a) An operator A : R2 → R2 such that σ(A) = ∅.

(b) An operator A : R2 → R2 such that rσ(A) < ‖A‖.

10. For 1 ≤ p ≤ ∞, let X = `p and A : `p → `p be defined by

(Ax)(j) =
x(j)

j
, j ∈ N, x ∈ `p.

What are σeig(A), σapp(A) and σ(A)? Why?

11. Let X = C[a, b] with ‖ · ‖∞ and let u ∈ C[a, b]. Let A : X → X
be defined by

(Ax)(t) = u(t)x(t), t ∈ [a, b], x ∈ X.

Prove that σapp(A) = cl {u(t) : t ∈ [a, b]}.

12. Let A ∈ B(X), where X is a Hilbert space. Prove that λ ∈
σeig(A) if and only if R(A∗ − λ̄I) not dense.

13. Let A ∈ B(X), where X is a Hilbert space, and let σ(A) 6= ∅
and µ ∈ K. Prove the following:

(a) σ(A− µI) = {λ− µ : λ ∈ σ(A)}.

(b) If µ ∈ ρ(A), then σ((A− µI)−1) =
{ 1

λ− µ
: λ ∈ σ(A)

}
.

(c) If A is a normal operator and µ ∈ ρ(A), then

rσ((A− µI)−1) =
1

dist (µ, σ(A))
.

14. Let A be a compact operator on a Hilbert space and 0 6= λ ∈ K.
Without using Riesz lemma prove that N(A − λI) is finite
dimensional.

15. For A ∈ B(X), prove that ‖A‖2 = rσ(A∗A).


