Spectral Results

4.1 Eigen Spectrum and Approximate Eigen Spectrum

Let X be a linear space and $A: X \to X$ be a linear operator. We recall the following definition from linear algebra.

Definition 4.1.1 A scalar λ is an **eigenvalue** of A if there exists a nonzero $x \in X$ such that

$$Ax = \lambda x$$
.

and in that case x is called an **eigenvector** of A corresponding to the eigenvalue λ . The set of all eigenvalues of A is called the **eigen spectrum** of A and it is denoted by $\sigma_{\text{eig}}(A)$.

Thus, λ is an eigenvalue of A if and only if $A - \lambda I$ is not one—one.

• λ is an eigenvalue of A if and only if $N(A - \lambda I)$ is non-trivial, and in that case every nonzero vector in $N(A - \lambda I)$ is an eigenvector corresponding to the eigenvalue λ .

Theorem 4.1.1 Let X be a linear space and $A: X \to X$ be a linear operator.

- (i) If $\lambda_1, \ldots, \lambda_n$ are distinct eigenvalues of A with corresponding eigenvectors x_1, \ldots, x_n , then $\{x_1, \ldots, x_n\}$ is a linearly independent set.
- (ii) If R(A) is finite dimensional, then $\sigma_{eig}(A)$ is a finite set.

Proof. (i) This result is normally proved in a course in linear algebra, and hence its proof is left as an exercise.

(ii) Suppose $\sigma_{\text{eig}}(A)$ is an infinite set. Let (λ_n) be a sequence in $\sigma_{\text{eig}}(A)$ consisting of distinct nonzero terms, and for each $n \in \mathbb{N}$, let x_n be an eigenvector corresponding to the eigenvalue λ_n . By (i), $\{x_n : n \in \mathbb{N}\}$ is linearly independent. Since $Ax_n = \lambda_n x_n$ for all $n \in \mathbb{N}$, it follows that

$$\{x_n : n \in \mathbb{N}\} \subseteq R(A)$$

and hence, R(A) is infinite dimensional. Thus, (ii) is proved.

Remark 4.1.1 If X is finite dimensional, and if $[A]_E$ is the matrix representation of A with respect to a basis E of X, then $\sigma_{eig}(A)$ is the set of all eigenvalues of $[A]_E$. \diamondsuit

Example 4.1.1 Let X = C[a, b] with $\|\cdot\|_{\infty}$ and let $u \in C[a, b]$. Let $A: X \to X$ be defined by

$$(Ax)(t) = u(t)x(t), \qquad t \in [a, b], \quad x \in X.$$

Clearly, $A \in \mathcal{B}(X)$. For $x \in C[a, b]$ and $\lambda \in \mathbb{K}$,

$$Ax = \lambda x \iff (u(t) - \lambda)x(t) = 0 \qquad \forall t \in [a, b].$$

Thus, $\lambda \in \sigma_{eig}(A)$ if and only if there exists an interval $I_{\lambda} \subseteq [a, b]$ such that $u(t) = \lambda$ for all $t \in I_{\lambda}$. In particular:

If u is not a constant function on any subinterval of [a,b], then $\sigma_{\text{eig}}(A) = \emptyset$.

Example 4.1.2 Let X be c_{00} or ℓ^p . Let (λ_n) be a sequence of scalars and $A: X \to X$ be defined by

$$(Ax)(j) = \lambda_j x(j), \quad j \in \mathbb{N}, \quad x \in X.$$

Then we have

$$Ae_n = \lambda_n e_n \quad \forall n \in \mathbb{N}.$$

Also, for $\lambda \in \mathbb{K}$ and for a nonzero $x \in X$,

$$Ax = \lambda x \iff \lambda \in {\{\lambda_n : n \in \mathbb{N}\}}.$$

Thus,

$$\sigma_{\text{eig}}(A) = \{\lambda_n : n \in \mathbb{N}\}.$$

In the last example, if $\lambda \notin \{\lambda_n : n \in \mathbb{N}\}$, but if λ is a limit point of $\{\lambda_n : n \in \mathbb{N}\}$, then there exists a subsequence of (λ_n) , say (λ_{k_n}) which converges to λ , and in that case, taking the ℓ^p -norm, we have

$$||Ae_{k_n} - \lambda e_{k_n}||_p \le ||Ae_{k_n} - \lambda_{k_n} e_{k_n}||_p + |\lambda_{k_n} - \lambda|$$

= $|\lambda_{k_n} - \lambda| \to 0$ as $n \to \infty$.

Definition 4.1.2 Let X be a normed linear space and $A: X \to X$ be a linear operator. A scalar λ is called an **approximate eigenvalue** of A if there exists (x_n) in X such that $||x_n|| = 1$ for every $n \in \mathbb{N}$ and

$$||Ax_n - \lambda x_n|| \to 0$$
 as $n \to \infty$.

The set of all approximate eigenvalues of A is called the **approximate eigen spectrum** of A and it is denoted by $\sigma_{app}(A)$. \diamondsuit

Clearly,

$$\sigma_{\text{eig}}(A) \subseteq \sigma_{\text{app}}(A)$$
.

The proof of the following theorem is easy and hence it is left as an exercise.

Theorem 4.1.2 If A is a linear operator on a normed linear space X and $\lambda \in \mathbb{K}$, then

$$\lambda \in \sigma_{\text{app}}(A) \iff A - \lambda I \text{ is not bounded below.}$$

Proof. Exercise.

As a consequence of the above theorem, we have:

• $\lambda \in \sigma_{app}(A)$ implies $A - \lambda I$ does not have a bounded inverse.

Thus, if $\lambda \in \sigma_{app}(A)$, then even if the operator equation

$$Ax - \lambda x = y$$

has a unique solution for a given $y \in X$, the solution does not depend continuously on the data y.

To see this, suppose $\lambda \in \sigma_{\rm app}(A)$ and $y \in R(A - \lambda I)$. Let $x \in X$ be such that $Ax - \lambda x = y$, and let (u_n) be such that $||u_n|| = 1$ for every $n \in \mathbb{N}$ and $||Au_n - \lambda u_n|| \to 0$. Then taking

$$v_n = Au_n - \lambda u_n$$
, $y_n = y + v_n$ and $x_n = x + u_n$,

we have

$$Ax_n - \lambda x_n = y_n$$

for every $n \in \mathbb{N}$. Note that

$$||y - y_n|| \to 0$$
 but $||x - x_n|| = 1 \quad \forall n \in \mathbb{N}$.

Example 4.1.3 Let X be c_{00} or ℓ^p with $\|\cdot\|_p$ and A be as in Example 4.1.2, i.e.,

$$(Ax)(j) = \lambda_j x(j), \quad j \in \mathbb{N}, \quad x \in X,$$

where (λ_n) be a sequence of scalars. Let $\Lambda := \{\lambda_n : n \in \mathbb{N}\}$. We show that

$$\sigma_{\rm app}(A) = \operatorname{cl} \Lambda.$$

We have already seen that $\operatorname{cl} \Lambda \subseteq \sigma_{\operatorname{app}}(A)$ (see the discussion preceding Definition 4.1.2). To see the reverse inclusion, let $\lambda \in \mathbb{K} \setminus \operatorname{cl} \Lambda$. Then, for every $x \in X$ and $j \in \mathbb{N}$, we have

$$|(Ax)(j) - \lambda x(j)| = |\lambda - \lambda_j| |x(j)| \ge d|x(j)|,$$

where $d := \operatorname{dist}(\lambda, \Lambda)$. Thus,

$$||Ax - \lambda x|| \ge d||x|| \quad \forall x \in X.$$

Consequently, $\lambda \notin \sigma_{app}(A)$.

In view of Example 4.1.3, we can state:

• Limit of a sequence of eigenvalues need not be an eigenvalue.

But, limit of a sequence of eigenvalues is always an approximate eigenvalue as the following theorem shows.

Theorem 4.1.3 Let X be a normed linear space and $A: X \to X$ be a linear operator. Then

$$\operatorname{cl} \sigma_{\operatorname{eig}}(A) \subseteq \sigma_{\operatorname{app}}(A).$$

Proof. We have already observed that $\sigma_{\text{eig}}(A) \subseteq \sigma_{\text{app}}(A)$. Now, let (λ_n) is a sequence of eigenvalues of A which converges to λ . Let $x_n \in X$ be such that $||x_n|| = 1$ and $Ax_n = \lambda_n x_n$ for every $n \in \mathbb{N}$. Then

$$||Ax_n - \lambda x_n|| \le ||Ax_n - \lambda_n x_n|| + |\lambda_n - \lambda|$$

= $|\lambda_n - \lambda| \to 0$ as $n \to \infty$.

Thus, $\lambda \in \sigma_{app}(A)$.

In fact, the last theorem is a consequence of the following theorem as well.

Theorem 4.1.4 Let A be a linear operator on a normed linear space X. Then $\sigma_{app}(A)$ is a closed set.

Proof. Let (λ_n) be a sequence in $\sigma_{app}(A)$ such that $\lambda_n \to \lambda$ for some $\lambda \in \mathbb{K}$. Note that, for every $x \in X$,

$$||Ax - \lambda_n x|| = ||(Ax - \lambda x) + (\lambda - \lambda_n)x||$$

$$\geq ||Ax - \lambda x|| - |\lambda - \lambda_n| ||x||$$

for every $n \in \mathbb{N}$. Assume for a moment that $\lambda \notin \sigma_{\text{app}}(A)$. Then there exists c > 0 such that

$$||Ax - \lambda x|| \ge c||x|| \quad \forall x \in X.$$

Hence, for $k \in \mathbb{N}$ with $|\lambda - \lambda_k| < c/2$, we have

$$||Ax - \lambda_k x|| \ge \frac{c}{2} ||x|| \quad \forall x \in X.$$

This is a contradiction to the fact that $\lambda_k \in \sigma_{app}(A)$.

Theorem 4.1.5 If $A \in \mathcal{B}(X)$, then

$$\sigma_{\text{app}}(A) \subset \{\lambda \in \mathbb{K} : |\lambda| < ||A||\}.$$

Proof. Let $\lambda \in \sigma_{\text{app}}(A)$. Let (x_n) in X be such that $||x_n|| = 1$ for every $n \in \mathbb{N}$ and $||Ax_n - \lambda x_n|| \to 0$. Then, for every $n \in \mathbb{N}$, we have

$$|\lambda| = ||\lambda x_n|| = ||Ax_n - (Ax_n - \lambda x_n)|| \le ||A|| + ||Ax_n - \lambda x_n||.$$

Thus, $|\lambda| \leq ||A|| + ||Ax_n - \lambda x_n||$ for every $n \in \mathbb{N}$. Letting $n \to \infty$, we obtain $|\lambda| \leq ||A||$.

Another proof. Let $\lambda \in \mathbb{K}$ be such that $|\lambda| > ||A||$. Then, for every $x \in X$,

$$||Ax - \lambda x|| \ge ||\lambda x|| - ||Ax|| \ge (|\lambda| - ||A||)||x||.$$

Hence, $A - \lambda I$ is bounded below so that $\lambda \notin \sigma_{app}(A)$. Therefore, if $\lambda \in \sigma_{app}(A)$, then $|\lambda| \leq ||A||$.

Combining Theorems 4.1.4 and 4.1.5, we obtain the following.

Corollary 4.1.6 If $A \in \mathcal{B}(X)$, then $\sigma_{app}(A)$ is a compact set.

Example 4.1.4 Consider the operator A in Example 4.1.1, i.e., X = C[a, b] with $\|\cdot\|_{\infty}$ and $A: X \to X$ is defined by

$$(Ax)(t) = u(t)x(t), \qquad t \in [a, b], \quad x \in X,$$

where $u \in C[a, b]$. We have seen that $\sigma_{eig}(A) = \emptyset$. Now, we show that

$$\sigma_{\rm app}(A) = \operatorname{cl} \{ u(t) : t \in [a, b] \}.$$

For this, first let $\lambda \notin \operatorname{cl} S$, where $S = \{u(t) : t \in [a,b]\}$. Then, $d := \inf\{|\lambda - \mu| : \mu \in S\} > 0$ so that we obtain

$$||Ax - \lambda x||_{\infty} \ge d||x||_{\infty} \quad \forall x \in C[a, b].$$

Hence, $\sigma_{app}(A) \subseteq \operatorname{cl} S$.

To obtain the reverse inclusion, by the closedness of $\sigma_{\rm app}(A)$, it is enough to prove $S \subseteq \sigma_{\rm app}(A)$. So, let $\lambda \in S$ and $t_0 \in [a,b]$ be such that $u(t_0) = \lambda$. For each $n \in \mathbb{N}$, let I_n be an open interval containing λ such that its length is less than 1/n. Since $u \in C[a,b]$, there exists an interval $J_n \subseteq [a,b]$ containing t_0 such that $u(J_n) \subseteq I_n$. Let $x_n \in C[a,b]$ be such that $||x_n||_{\infty} = 1$ and $x_n(t) = 0$ for $t \notin J_n$. Then we have

$$||Ax_n - \lambda x_n||_{\infty} = \sup_{t \in J_n} |u(t) - \lambda| |x_n(t)| \le \sup_{t \in J_n} |u(t) - \lambda| \le \frac{1}{n} \to 0.$$

Thus, $S \subseteq \sigma_{app}(A)$. Thus, we have shown that $\sigma_{app}(A) = \operatorname{cl} S$. \square

Next we show some nice properties of the approximate eigenspectra of compact operators. Before that, we prove the following lemma which will be used subsequently.

Lemma 4.1.7 (Riesz lemma) Let X be a normed linear space, X_0 be a proper closed subspace of X and 0 < r < 1. Then there exists $x_r \in X$ such that

$$||x_r|| = 1$$
 and dist $(x_r, X_0) \ge r$.

Proof. Since X_0 is a proper closed subspace of X, there exists $x \in X \setminus X_0$ such that $d := \operatorname{dist}(x, X_0) > 0$. Since d/r > d, there exists $u \in X_0$ such that $||u - x|| \le d/r$. Let

$$x_r = \frac{x - u}{\|x - u\|}.$$

Then $||x_r|| = 1$ and

$$dist(x_r, X_0) = \frac{dist(x, X_0)}{\|x - u\|} \ge \frac{d}{d/r} = r.$$

This completes the proof.

Theorem 4.1.8 Let $A \in \mathcal{K}(X)$. Then the following hold.

- (i) $\sigma_{app}(A) \setminus \{0\} = \sigma_{eig}(A) \setminus \{0\},$
- (ii) $N(A \lambda I)$ is finite dimensional for every nonzero $\lambda \in \sigma_{eig}(A)$.
- (iii) 0 is the only possible limit point of $\sigma_{eig}(A)$, and $\sigma_{eig}(A)$ is a countable set.

Proof. (i) Its enough to prove that $\sigma_{app}(A) \setminus \{0\} \subseteq \sigma_{eig}(A) \setminus \{0\}$. So, let $\lambda \in \sigma_{app}(A) \setminus \{0\}$ and let (x_n) in X such that $||x_n|| = 1$ for every $n \in \mathbb{N}$ and $||Ax_n - \lambda x_n|| \to 0$ as $n \to \infty$. Since A is a compact operator, there exists a subsequence (x_{k_n}) such that $Ax_{k_n} \to y$ for some $y \in X$. Hence,

$$x_{k_n} = \frac{1}{\lambda} [Ax_{k_n} - (Ax_{k_n} - \lambda x_{k_n})] \to \frac{y}{\lambda}$$

so that we have

$$Ax_{k_n} o \frac{Ay}{\lambda}.$$

Since $Ax_{k_n} \to y$, we obtain $Ay = \lambda y$. Also, $y \neq 0$, since $||x_{k_n}|| = 1$ and $\lambda \neq 0$. Thus, we have proved that $\lambda \in \sigma_{eig}(A)$.

(ii) Let λ be a nonzero eigenvalue of A. Suppose $N(A - \lambda I)$ is infinite dimensional. Let $\{x_n : n \in \mathbb{N}\}$ be a linearly independent subset of $N(A - \lambda I)$. Let $X_0 = \{0\}$ and for $n \in \mathbb{N}$, let

$$X_n := \operatorname{span} \{x_1, \dots, x_n\}.$$

Since $\{x_n : n \in \mathbb{N}\}$ is linearly independent, by Riesz lemma (Lemma 4.1.7), for each $n \in \mathbb{N}$, there exists $u_n \in X_n$ such that

$$||u_n|| = 1$$
 and dist $(u_n, X_{n-1}) \ge \frac{1}{2}$.

Note that for $n, m \in \mathbb{N}$ with n > m, $u_m \in X_{n-1}$ and

$$||Au_n - Au_m|| = ||\lambda(u_n - u_m)|| \ge \frac{|\lambda|}{2}.$$

Thus, (Au_n) does not have a Cauchy subsequence so that (Au_n) does not have a convergent subsequence.

(iii) For r > 0, let

$$\Delta_r := \{ \lambda \in \sigma_{eig}(A) : |\lambda| \ge r \}.$$

It is enough to prove that prove that Δ_r is a finite set (Why?). Assume for a moment that Δ_r is an infinite set for some r > 0. Let (λ_n) be a sequence of distinct elements from Δ_r . For each $n \in \mathbb{N}$, let x_n be an eigen vector of A corresponding to the eigenvalue λ_n . Let $X_0 = \{0\}$ and for $n \in \mathbb{N}$, let

$$X_n := \operatorname{span} \{x_1, \dots, x_n\}.$$

Since $\{x_n : n \in \mathbb{N}\}$ is linearly independent, by Riesz lemma (Lemma 4.1.7), for each $n \in \mathbb{N}$, there exists $u_n \in X_n$ such that

$$||u_n|| = 1$$
 and $dist(u_n, X_{n-1}) \ge \frac{1}{2}$.

Note that for $n, m \in \mathbb{N}$ with n > m,

$$Au_n - Au_m = \lambda_n u_n + (Au_n - \lambda_n u_n) - Au_m,$$

where

$$Au_n - \lambda_n u_n \in X_{n-1}$$
 and $Au_m \in X_{n-1}$.

Hence,

$$||Au_n - Au_m|| \ge \operatorname{dist}(\lambda_n u_n, X_{n-1}) = |\lambda_n| \operatorname{dist}(u_n, X_{n-1}) \ge \frac{r}{2}.$$

Thus, (Au_n) does not have a Cauchy subsequence so that (Au_n) does not have a convergent subsequence.

By the very nature of a compact operator, it is clear that if X is infinite dimensional and $A \in \mathcal{K}(X)$, then

$$0 \in \sigma_{\rm app}(S)$$
.

In view of Theorem 4.1.8, one may enquire whether every compact operator has an eigenvalue. The answer is, in general, not in affirmative as the following example shows.

Example 4.1.5 Let $X = L^{2}[a, b]$ and

$$(Ax)(s) = \int_a^s x(t) dt, \quad x \in L^2[a, b].$$

Recall from Example 2.4.4 that A is a compact operator.

Now, let $\lambda \in \mathbb{K}$ and $x \in L^2[a,b]$ be such that $Ax = \lambda x$. Then we have

 $\lambda x(s) = \int_{a}^{s} x(t) dt$, for almost all $s \in [a, b]$.

Recall from fundamental theorem of Lebesgue integration, that for $u \in L^2[a, b]$, if

$$v(s) = \int_{a}^{s} u(t) dt, \quad s \in [a, b],$$

then v is absolutely continuous, and v'=u almost everywhere. Thus, if $\lambda=0$, then x=0, and if $\lambda\neq 0$, then x is absolutely continuous, x(a)=0 and

$$x'(s) = \frac{x(s)}{\lambda}$$
 a.e.,

so that, in this case also, we obtain x=0. Thus, A does not have any eigenvalue.

4.2 Resolvent Set and Spectrum

Throughout this chapter, we assume that X is a normed linear space and $A: X \to X$ is a linear operator. For deriving interesting and important results, we shall assume further properties on X and A.

Definition 4.2.1 The set of all $\lambda \in \mathbb{K}$ such that $A - \lambda I$ is bijective and $(A - \lambda I)^{-1}$ is continuous is called the **resolvent set** of A, and it is denoted by $\rho(A)$. The compliment of $\rho(A)$ is called the **spectrum** of A, and it is denoted by $\sigma(A)$.

Thus, for $\lambda \in \mathbb{K}$,

$$\lambda \in \rho(A) \iff A - \lambda I \text{ is bijective and } (A - \lambda I)^{-1} \in \mathcal{B}(X),$$

 $\lambda \in \sigma(A) \iff \lambda \notin \rho(A).$

The following theorem is an immediate consequence of bounded inverse theorem (Corollary 3.1.8).

Theorem 4.2.1 If X is a Banach space and $A \in \mathcal{B}(X)$, then

$$\sigma(A) = \{ \lambda \in \mathbb{K} : A - \lambda I \text{ is not bijective } \}.$$

Theorem 4.2.2 Let X be a Banach space and $A \in \mathcal{B}(X)$. Then

$$\sigma(A) = \sigma_{app}(A) \cup \sigma_{com}(A),$$

where $\sigma_{com}(A)$, called the **compression spectrum** of A, is the set all those $\lambda \in \mathbb{K}$ such that $R(A - \lambda I)$ not dense in X.

Proof. Clearly,

$$\sigma_{app}(A) \cup \sigma_{com}(A) \subseteq \sigma(A)$$
.

Next, let $\lambda \notin \sigma_{app}(A) \cup \sigma_{com}(A)$. Then $A - \lambda I$ is bounded below and $R(A - \lambda I)$ is dense. Hence, $A - \lambda I$ is bijective so that by Theorem 4.2.1,

$$\sigma(A) \subseteq \sigma_{app}(A) \cup \sigma_{com}(A)$$
.

This completes the proof.

Clearly

$$\sigma_{\text{eig}}(A) \subseteq \sigma_{\text{app}}(A) \subseteq \sigma(A)$$
.

We have already seen the case where the first inclusion above is strict. The following example shows that the second inclusion also can be strict.

Example 4.2.1 Let $X = c_{00}$ with ℓ^p -norm and A be the *right shift operator*, that is,

$$(Ax)(i) = \begin{cases} 0, & i = 1, \\ x(i-1), & i \neq 1. \end{cases}$$

Then $||Ax|| \ge ||x||$ for all $x \in X$ and $e_1 \notin R(A)$. Thus,

$$0 \in \sigma(A) \setminus \sigma_{\rm app}(A)$$
.

Also, for any $\lambda \in \mathbb{K}$ with $|\lambda| < 1$, we have

$$||Ax - \lambda x|| \ge ||Ax|| - ||\lambda x|| \ge (1 - |\lambda|)||x|| \quad \forall x \in X,$$

and we see that $e_1 \notin R(A - \lambda I)$ so that

$$\{\lambda \in \mathbb{K} : |\lambda| < 1\} \subseteq \sigma(A) \setminus \sigma_{app}(A).$$

We shall see in Example 4.2.3 that, for this operator A,

$$\sigma(A) = \{ \lambda \in \mathbb{K} : |\lambda| \le 1 \} \text{ and } \sigma_{\text{app}}(A) = \{ \lambda \in \mathbb{K} : |\lambda| = 1 \}.$$

Example 4.2.2 Let X be c_{00} or ℓ^p with $\|\cdot\|_p$ and A be as in Example 4.1.3, i.e.,

$$(Ax)(j) = \lambda_j x(j), \quad j \in \mathbb{N}, \quad x \in X,$$

where (λ_n) be a sequence of scalars. We have seen that

$$\sigma_{\rm eig}(A) = \Lambda$$
 and $\sigma_{\rm app}(A) = \operatorname{cl} \Lambda$,

where $\Lambda := \{\lambda_n : n \in \mathbb{N}\}$. Thus, $\operatorname{cl} \Lambda \subseteq \sigma(A)$. Now, we show that

$$\sigma(A) = \operatorname{cl} \Lambda.$$

Let $\lambda \notin \operatorname{cl} \Lambda$. We know that $A - \lambda I$ is one-one. For $y \in X$, let $x \in X$ be defined by

$$x(j) = \frac{y(j)}{\lambda_j - \lambda} \quad \forall j \in \mathbb{N}.$$

Since $|\lambda_j - \lambda| \ge d := \text{dist}(\lambda, \text{cl}\,\Lambda)$, $x \in X$, and $Ax - \lambda x = y$ so that $A - \lambda I$ is onto as well. Further,

$$||(A - \lambda I)^{-1}y|| = ||x|| \le \frac{||y||}{d}$$

so that $(A - \lambda I)^{-1}$ is a bounded operator. Thus, $\sigma(A) \subseteq \operatorname{cl} \Lambda$, and we have completed the proof of $\sigma(A) = \operatorname{cl} \Lambda$.

We have seen that $\sigma_{\rm app}(A)$ is a closed set, and if $A \in \mathcal{B}(X)$, then $\sigma_{\rm app}(A) \subseteq \{\lambda \in \mathbb{K} : |\lambda| \le ||A||\}$. Now, we show that these results hold for $\sigma(A)$ whenever X is a Banach space.

Theorem 4.2.3 Let X be a Banach space and $A \in \mathcal{B}(X)$. Then the following hold.

(i) $\sigma(A)$ is a bounded set. More precisely,

$$\sigma(A) \subseteq \{\lambda \in \mathbb{K} : |\lambda| \le ||A||\}.$$

(ii) $\rho(A)$ is an open set. More precisely, for each $\lambda_0 \in \rho(A)$,

$$\{\lambda \in \mathbb{K} : |\lambda - \lambda_0| < 1/\|(A - \lambda_0 I)^{-1}\|\} \subseteq \rho(A).$$

In particular, $\sigma(A)$ is a compact subset of \mathbb{K} .

Proof. (i) Let $\in \mathbb{K}$ be such that $|\lambda| > ||A||$. Then, for every $x \in X$,

$$||(A - \lambda I)x|| \ge ||\lambda x|| - ||Ax|| \ge (|\lambda| - ||A||)||x||.$$

From this, it follows that $A-\lambda I$ is one—one, $R(A-\lambda I)$ is closed and $A-\lambda I$ has a continuous inverse from its range. Hence, to complete the proof of (i), using Theorem 4.2.1, it is enough to prove that $R(A-\lambda I)=X$. Suppose this is not true. Then, by a consequence of Hahn Banach theorem (see Corollary 3.2.3), there exists $f\in X'$ such that $\|f\|=1$ and f(y)=0 for all $y\in R(A-\lambda I)$. In particular, $f(Ax-\lambda x)=0$ for all $x\in X$. Hence,

$$|\lambda| \|x\| = \|\lambda x\| = \|f(Ax)\| \le \|f\| \|A\| \|x\| = \|A\| \|x\|$$
 $\forall x \in X.$

Thus,

$$(|\lambda| - ||A||)||x|| = 0 \qquad \forall x \in X.$$

This is a contradiction, since $|\lambda| > ||A||$. Thus, $|\lambda| > ||A||$ implies $A - \lambda I$ is bijective.

(ii) Let $\lambda_0 \in \rho(A)$ and $\lambda \in \mathbb{K}$ be such that

$$|\lambda - \lambda_0| < 1/\|(A - \lambda_0 I)^{-1}\|.$$

Since,

$$A - \lambda I = (A - \lambda_0 I) - (\lambda - \lambda_0) I$$

= $[I - (\lambda - \lambda_0)(A - \lambda_0 I)^{-1}](A - \lambda_0 I),$

by (i) and Theorem 4.2.1, $\lambda \in \rho(A)$. Thus,

$$\{\lambda \in \mathbb{K} : |\lambda - \lambda_0| < \frac{1}{\|(A - \lambda_0 I)^{-1}\|}\} \subseteq \rho(A).$$

Hence, $\rho(A)$ is an open set and consequently, $\sigma(A)$ is a closed set. By (i) and (ii), $\sigma(A)$ is a compact subset of \mathbb{K} .

Corollary 4.2.4 *Let* X *be a Banach space and* $A \in \mathcal{B}(X)$ *. Then*

$$\sigma(A) \subseteq \bigcap_{n=1}^{\infty} \{\lambda \in \mathbb{K} : |\lambda| \le ||A^n||^{1/n}\}.$$

 \Diamond

Proof. It is enough to show that

$$\bigcup_{n=1}^{\infty} \{ \lambda \in \mathbb{K} : |\lambda|^n > ||A^n|| \} \subseteq \rho(A).$$

So, let $\lambda \in \mathbb{K}$ is such that $|\lambda|^n > ||A^n||$ for some $n \in \mathbb{N}$. Note that

$$A^{n} - \lambda^{n}I = (A - \lambda I)\sum_{j=1}^{n} \lambda^{j-1}A^{n-j} = \left[\sum_{j=1}^{n} \lambda^{j-1}A^{n-j}\right](A - \lambda I)$$

By Theorem 4.2.3(i), $A^n - \lambda^n I$ is bijective. Hence, from the above equalities, $A - \lambda I$ is bijective. Since X is a Banach space, by Theorem 4.2.1, $\lambda \in \rho(A)$.

Definition 4.2.2 Let $A \in \mathcal{B}(X)$. Then the number

$$r_{\sigma}(A) := \sup\{|\lambda| : \lambda \in \sigma(A)\}$$

is called the **spectral radius** of A.

By Corollary 4.2.4, if X is a Banach space and $A \in \mathcal{B}(X)$, then

$$r_{\sigma}(A) \leq \inf_{n \in \mathbb{N}} ||A^n||^{1/n}.$$

In fact, we have the following theorem. We omit its proof. Interested reader may see the proof in [5].

Theorem 4.2.5 (Gelfand–Mazur Theorem) Let X be a Banach space over the complex field \mathbb{C} and $A \in \mathcal{B}(X)$. Then

- (i) (Gelfand–Mazur Theorem) $\sigma(A)$ is nonempty,
- (ii) (Spectral radius formula) $\lim_{n\to\infty}\|A^n\|^{1/n}$ exists and

$$r_{\sigma}(A) = \lim_{n \to \infty} ||A^n||^{1/n}.$$

Theorem 4.2.6 Let X be a Banach space and $A \in \mathcal{B}(X)$. Then, every boundary point of $\sigma(A)$ is an approximate eigenvalue of A.

Proof. Let λ be a boundary point of $\sigma(A)$. Then $\lambda \in \sigma(A)$ and there exists a sequence (μ_n) in $\rho(A)$ such that $\mu_n \to \lambda$. Suppose $\lambda \notin \sigma_{\text{app}}(A)$, and let c > 0 be such that

$$||Ax - \lambda x|| \ge c||x|| \quad \forall x \in X.$$

Let $N \in \mathbb{N}$ be such that $|\lambda - \mu_N| < c/2$. Then, we have

$$||Ax - \mu_N x|| = ||(Ax - \lambda x) - (\mu_N - \lambda)x||$$

$$\geq ||Ax - \lambda x|| - |\mu_N - \lambda|||x||$$

$$\geq (c - |\mu_N - \lambda|)||x||$$

$$> \frac{c}{2}||x||$$

Hence,

$$||(A - \mu_N I)^{-1}|| < \frac{2}{c}$$

so that

$$\|(\lambda - \mu_N)(A - \mu_N I)^{-1}\| < 1.$$

Therefore, by Theorem 4.2.3(ii), $\lambda \in \rho(A)$. This is a contradiction to the fact that $\lambda \in \sigma(A)$.

Example 4.2.3 Consider the Example 4.2.1. We show that

$$\sigma(A) = \{ \lambda \in \mathbb{K} : |\lambda| \le 1 \} \text{ and } \sigma_{\text{app}}(A) = \{ \lambda \in \mathbb{K} : |\lambda| = 1 \}.$$

We have seen that

$$\{\lambda \in \mathbb{K} : |\lambda| < 1\} \subseteq \sigma(A) \setminus \sigma_{app}(A).$$

It can also be seen that $||A|| \le 1$. Thus,

$$\{\lambda \in \mathbb{K} : |\lambda| < 1\} \subseteq \sigma(A) \subseteq \{\lambda \in \mathbb{K} : |\lambda| \le 1\}.$$

Hence, by the closedness of $\sigma(A)$, $\sigma(A) = \{\lambda \in \mathbb{K} : |\lambda| \leq 1\}$. The above observations together with Theorem 4.2.6 imply that $\sigma_{\text{app}}(A) = \{\lambda \in \mathbb{K} : |\lambda| = 1\}$.

Example 4.2.4 Let X = C[a, b] with $\|\cdot\|_{\infty}$ and let $u \in C[a, b]$. Let $A: X \to X$ be defined by

$$(Ax)(t) = u(t)x(t), \qquad t \in [a, b], \quad x \in X.$$

Clearly, $A \in \mathcal{B}(X)$. We show that

$$\sigma(A) = \operatorname{cl} S$$
,

where $S := \{u(t) : t \in [a, b]\}$. Recall from Example 4.1.4 that $\sigma_{\text{app}}(A) = \operatorname{cl} S$. Hence, it is enough to show that $\sigma(A) \subseteq \operatorname{cl} S$.

Suppose $\lambda \notin \operatorname{cl} S$. Then $A - \lambda I$ is one-one. Also, for every $y \in C[a,b]$, the function $x \in C[a,b]$ defined by

$$x(t) = \frac{y(t)}{u(t) - \lambda}, \quad t \in [a, b],$$

satisfies the equation $Ax - \lambda x = y$. Thus, for all $\lambda \notin \operatorname{cl} S$, $A - \lambda I$ is bijective. Since X is a Banach space, by Theorem 4.2.1, $\sigma(A) \subseteq S$. Thus, we have proved that $\sigma(A) = \operatorname{cl} S$.

4.3 Spectral Results for Self Adjoint, Normal and Unitary Operators

We know from linear algebra that if A is a self adjoint operator on a finite dimensional inner product space, then its eigen spectrum is nonempty finite set of real numbers, irrespective of whether the scalar field is \mathbb{R} or \mathbb{C} . One may wonder whether the same can be said about the spectrum of a self adjoint operator on a (possibly infinite dimensional) Hilbert space. Yes, we can. We shall move towards the justification of this claim.

Throughout this section, we consider X to be a Hilbert space and $A \in \mathcal{B}(X)$. Recall that A is

- self-adjoint if $A^* = A$,
- normal if $A^*A = AA^*$, and
- unitary if $A^*A = I = AA^*$.

We shall make use of the following easily verifiable result.

Lemma 4.3.1 Let $A \in \mathcal{B}(X)$. Then

$$R(A)^{\perp} = N(A^*).$$

Theorem 4.3.2 Let $A \in \mathcal{B}(X)$ and $\lambda \in \mathbb{K}$. Then

 $R(A - \lambda I)$ is dense in X if and only if $\bar{\lambda} \notin \sigma_{eig}(A^*)$.

Proof. We note that for $\in \mathbb{K}$, $(A - \lambda I)^* = A^* - \bar{\lambda}I$. Hence, by Lemma 4.3.1, replacing A by $A - \lambda I$, we obtain

$$\bar{\lambda} \not\in \sigma_{\text{eig}}(A^*) \iff N(A^* - \bar{\lambda}I) = \{0\}$$
 $\iff R(A - \lambda I)^{\perp} = \{0\}$
 $\iff R(A - \lambda I) \text{ dense in } X.$

The last equivalence is a consequence of projection theorem. This competes the proof. \blacksquare

In view of the abve theorem together with Theorem 4.2.2, we have the following corollary.

Corollary 4.3.3 Let $A \in \mathcal{B}(X)$. Then

$$\sigma(A) = \sigma_{\text{app}}(A) \cup \{\lambda \in \mathbb{K} : \bar{\lambda} \in \sigma_{\text{eig}}(A^*)\}.$$

Clearly, if A is self adjoint, then

$$\sigma_{\text{eig}}(A) \subseteq \mathbb{R}$$
.

We, in fact, have the following.

Theorem 4.3.4 Let A be a self-adjoint operator. Then

$$\sigma(A) \subseteq \mathbb{R}$$
.

Proof. If $\mathbb{K} = \mathbb{R}$, then there is nothing to prove. Hence, assume that $\mathbb{K} = \mathbb{C}$. Let $\lambda = \alpha + i\beta$ with $\alpha, \beta \in \mathbb{R}$ with $\beta \neq 0$. It is enough to show that $\lambda \in \rho(A)$. For this first we note that, for every $x \in X$,

$$||Ax - \lambda x||^2 = \langle (A - \alpha I)x + i\beta x, (A - \alpha I)x + i\beta x \rangle$$
$$= ||(A - \alpha I)x||^2 + |\beta|^2 ||x||^2.$$

To obtain the above, we used the fact that

$$\langle (A - \alpha I)x, \beta x \rangle = \langle \beta x, (A - \alpha I)x \rangle.$$

Thus, $A - \lambda I$ is bounded below, so that it is one-one and $R(A - \lambda I)$ is closed. Similarly, $A - \bar{\lambda}I$ is also one-one. Hence, by Lemma 4.3.1,

$$[R(A - \lambda I)]^{\perp} = N(A^* - \bar{\lambda}I) = N(A - \bar{\lambda}I) = \{0\}.$$

Consequently, $R(A - \lambda I)$ is dense in X, so that by the closedness of $R(A - \lambda I)$, $A - \lambda I$ is onto.

For normal operators we have the following.

Theorem 4.3.5 Let A be a normal operator and $\lambda \in \mathbb{K}$. Then

(i) For
$$x \in X$$
, $Ax = \lambda x \iff A^*x = \bar{\lambda}x$. In particular,

$$\lambda \in \sigma_{\operatorname{eig}}(A) \iff \bar{\lambda} \in \sigma_{\operatorname{eig}}(A^*).$$

(ii)
$$\lambda, \mu \in \mathbb{K}, \lambda \neq \mu \Longrightarrow N(A - \lambda I) \perp N(A - \mu I).$$

(iii)
$$\sigma(A) = \sigma_{app}(A)$$
.

Proof. Let $x \in X$ and $\lambda \in \mathbb{K}$. Then, using the fact that A is normal, we have

$$||Ax - \lambda x||^2 = \langle (A - \lambda I)x, (A - \lambda I)x \rangle$$

$$= \langle x, (A^* - \bar{\lambda}I)(A - \lambda I)x \rangle$$

$$= \langle x, (A - \lambda I)(A^* - \bar{\lambda}I)x \rangle$$

$$= \langle (A^* - \bar{\lambda}I)x, (A^* - \bar{\lambda}I)x \rangle$$

$$= ||A^*x - \bar{\lambda}x||^2.$$

From this, (i) follows.

Now, let $\lambda, \mu \in \mathbb{K}$ such that $\lambda \neq \mu$. Let $x \in N(A - \lambda I)$ and $y \in N(A - \mu I)$. Then, using (i), we have

$$\lambda \langle x, y \rangle = \langle \lambda x, y \rangle = \langle Ax, y \rangle = \langle x, A^*y \rangle = \langle x, \overline{\mu}y \rangle = \mu \langle x, y \rangle.$$

Thus, $\lambda \neq \mu$ implies $\langle x, y \rangle = 0$. Thus, (ii) is proved.

Now, (i) and Corollary 4.3.3 imply (iii).

Next result is concerned about the spectra of unitary operators.

Theorem 4.3.6 Let A be a unitary operator and $X \neq \{0\}$. Then

$$\sigma(A) \subseteq \{\lambda \in \mathbb{K} : |\lambda| = 1\}.$$

Further, if $\sigma(A) \neq \emptyset$, then

$$r_{\sigma}(A) = 1.$$

Proof. Since $A^*A = I = AA^*$,

$$||Ax|| = ||x|| = ||A^*x|| \quad \forall x \in X.$$

Hence, ||A|| = 1. Now, let $\lambda \in \mathbb{K}$ be such that $|\lambda| \neq 1$. Then for every $x \in X$, we have

$$||Ax - \lambda x|| \ge ||Ax|| - |\lambda| ||x||| = |1 - |\lambda| ||x||.$$

Consequently, by Theorem 4.3.5 (iii), $\sigma(A) \subseteq \{\lambda \in \mathbb{K} : |\lambda| = 1\}$. The last part follows from the definition of $r_{\sigma}(A)$.

Definition 4.3.1 For $A \in \mathcal{B}(X)$, the set

$$W(A) := \{ \langle Ax, x \rangle : ||x|| = 1 \}$$

is called the **numerical range** of A, and

$$r_W(A) := \sup\{|\langle Ax, x \rangle| : ||x|| = 1\}$$

 \Diamond

 \Diamond

is called the **numerical radius** of A.

Observe:

• A self adjoint $\Longrightarrow W(A) \subseteq \mathbb{R}$.

Converse of the above need not be true. For instance, if $\mathbb{K} = \mathbb{R}$, then $W(A) \subseteq \mathbb{R}$ even if A is not self adjoint. However, the converse holds if the scalar field is \mathbb{C} (see [5]).

Definition 4.3.2 If $W(A) \subseteq [0,\infty)$, then A is called a **positive** operator . \diamondsuit

Notation 4.3.1 For $A \in \mathcal{B}(X)$ with $W(A) \subseteq \mathbb{R}$, let us use the following notations:

$$\alpha_A := \inf\{\langle Ax, x \rangle : ||x|| = 1\},$$

$$\beta_A := \sup\{\langle Ax, x \rangle : ||x|| = 1\}.$$

Theorem 4.3.7 Let $A \in \mathcal{B}(X)$ be self adjoint. Then

$$||A|| = r_W(A) = \max\{|\alpha_A|, |\beta_A|\},\$$

and if A is positive self adjoint, then $||A|| = \beta_A$.

Proof. Follows from Theorem 2.2.5.

Lemma 4.3.8 Suppose A is a positive self-adjoint operator. Then

$$\beta_A \in \sigma(A)$$
.

In particular, if A is positive self adjoint, then $r_{\sigma}(A) = ||A||$.

Proof. Let (x_n) in X be such that $||x_n|| = 1$ for all $n \in \mathbb{N}$ and $\langle Ax_n, x_n \rangle \to \beta_A$ as $n \to \infty$. Note that

$$||Ax_n - \beta_A x_n||^2 = ||Ax_n||^2 - 2\beta_A \langle Ax_n, x_n \rangle + \beta_A^2$$

$$\leq ||A||^2 - 2\beta_A \langle Ax_n, x_n \rangle + \beta_A^2.$$

Since $\langle Ax_n, x_n \rangle \to \beta_A$ as $n \to \infty$ and $\beta_A = ||A||$ (see Theorem 4.3.7), it follows from the above inequality that $||Ax_n - \beta_A x_n|| \to 0$ as $n \to \infty$. Thus, $\beta_A \in \sigma_{\rm app}(A) = \sigma(A)$.

Theorem 4.3.9 Suppose A is a self-adjoint operator. Then

$$r_{\sigma}(A) = ||A||.$$

In particular, there exists $\lambda \in \sigma(A)$ such that $|\lambda| = ||A||$.

Proof. In view of Theorem 4.3.7, it is enough to prove that

$$\{\alpha_A, \beta_A\} \subseteq \sigma(A)$$
.

For this purpose, we may first observe that

$$B := A - \alpha_A I$$
 and $C := \beta_A I - A$

are positive self adjoint operators. Therefore, by what we have proved in the previous paragraph,

$$\beta_B \in \sigma(B), \quad \beta_C \in \sigma(C).$$

But,

$$\beta_B = \sup\{\langle (A - \alpha_A I)x, x \rangle : ||x|| = 1\} = \beta_A - \alpha_A,$$

$$\beta_C = \sup\{\langle (\beta_A I - A)x, x \rangle : ||x|| = 1\} = \beta_A - \alpha_A,$$

$$\sigma(B) = \{\lambda - \alpha_A : \lambda \in \sigma(A)\},$$

$$\sigma(C) = \{\beta_A - \lambda : \lambda \in \sigma(A)\}.$$

Hence, there exists $\lambda, \mu \in \sigma(A)$ such that

$$\beta_A - \alpha_A = \lambda - \alpha_A$$
 $\beta_A - \alpha_A = \beta_A - \mu$.

Consequently, $\beta_A = \lambda \in \sigma(A)$ and $\alpha_A = \mu \in \sigma(A)$. This completes the proof of the theorem.

Corollary 4.3.10 If $A \in \mathcal{B}(X)$ is a compact self adjoint operator, then there exists $\lambda \in \sigma_{eig}(A)$ such that $|\lambda| = ||A||$.

Remark 4.3.1 Theorem 4.3.9, in particular, shows that if A is a self adjoint operator, then the fact that $\sigma(A) \neq \emptyset$ (cf. Theorem 4.2.5) holds for a real Hilbert space as well.

By Theorem 4.3.9, if A is a self adjoint operator, then $\sigma(A) \neq \emptyset$. However, the eigenspectrum can be empty even if A is self adjoint as the following example shows.

Example 4.3.1 Let $X = L^{2}[a, b]$ and

$$(Ax)(t) = tx(t)$$
 for almost all $t \in [a, b]$.

Note that A is a self adjoint operator.

Now, for $\lambda \in \mathbb{K}$ and $x \in L^2[a,b]$,

$$Ax = \lambda x \iff (\lambda - t)x(t) = 0 \text{ for almost all } t \in [a, b]$$

 $\iff x = 0.$

Thus, A does not have any eigenvalue.

Recall from Theorem 4.3.5 (iii) that if A is a normal operator, then $\sigma(A) = \sigma_{\rm app}(A)$. For a general bounded operator, we have the following result.

Theorem 4.3.11 For $A \in \mathcal{B}(X)$,

$$\sigma(A) = \sigma_{\text{app}}(A) \cup \{\lambda \in \mathbb{K} : \bar{\lambda} \in \sigma_{\text{eig}}(A^*).$$

Proof. By Theorem 4.3.2, for $\lambda \in \mathbb{K}$,

$$R(A - \lambda I)$$
 not dense in $X \iff \bar{\lambda} \in \sigma_{eig}(A^*)$.

Hence, the result is a consequence of Theorem 4.2.2.

4.4 Spectral Representations

Recall from linear algebra that if X is a finite dimensional inner product space and $A:X\to X$ is a self adjoint operator, then A can be represented as

$$Ax = \sum_{j=1}^{k} \lambda_j \langle x, u_j \rangle u_j, \qquad x \in X,$$

where $\lambda_1, \ldots, \lambda_k$ are nonzero real numbers and $\{u_1, \ldots, u_k\}$ is an orthonormal set in X.

In this section we prove that an analogous representation is possible if A is a compact self adjoint operator in a general Hilbert space. Our proof includes the case of finite dimensional case as well.

First, let us recall the following facts about a compact operator A on a general Banach space (cf. Theorem 4.1.8):

- 1. Eigen spectrum of A is countable,
- 2. 0 is the only possible limit point of he eigen spectrum of A, and
- 3. Eigen space associated with every nonzero eigenvalue is finite dimensional.
- 4. Every nonzero approximate eigenvalue of A is an eigenvalue.

Also for a self adjoint operator A on a Hilbert space A, we know the following (cf. Theorems 4.3.5 and Corollary 4.3.10):

- 1. Eigen vectors corresponding to distinct eigenvalues of A are orthogonal.
- 2. A has an eigenvalue λ such that $|\lambda| = ||A||$.

We shall also make use of a few simple-minded lemmas.

Lemma 4.4.1 Let A be a self adjoint operator on a Hilbert space X and X_0 be a closed subspace of X. Then

$$A(X_0) \subseteq X_0 \iff A(X_0^{\perp}) \subseteq X_0^{\perp}.$$

Proof. Suppose $A(X_0) \subseteq X_0$. Let $x \in X_0^{\perp}$. Then for every $y \in X_0$, $Ay \in X_0$ so that

$$\langle Ax, y \rangle = \langle x, Ay \rangle = 0.$$

Thus, $A(X_0^{\perp}) \subseteq X_0^{\perp}$. Also, by projection theorem, $X_0^{\perp \perp} = X_0$ so that from what we have proved,

$$A(X_0^{\perp}) \subseteq X_0^{\perp} \Longrightarrow A(X_0) = A(X_0^{\perp \perp}) \subseteq X_0^{\perp \perp} = X_0.$$

This completes the proof.

Definition 4.4.1 Let A be a linear operator on a linear space X. A subspace X_0 of X is said to be **invariant** under A or an **invariant** subspace for A if $A(X_0) \subseteq X_0$.

Example 4.4.1 Let A be a linear operator on a linear space X and let $\{\lambda_1, \ldots, \lambda_k\} \subseteq \mathbb{K}$. Then it can be easily seen that

$$X_0 = N(A - \lambda_1 I) + \ldots + N(A - \lambda_k I)$$

is invariant under A.

154

Suppose A is a self adjoint operator on a Hilbert space X and X_0 is an invariant subspace for X. Then, by Lemma 4.4.1, X_0^{\perp} is also invariant under A. Hence, it can be seen that

$$A_1 := A_{|_{X_0}}$$
 and $A_2 := A_{|_{X_0^{\perp}}}$

are self adjoint operators on X_0 and X_0^{\perp} , respectively.

Lemma 4.4.2 Let A be a self adjoint operator on a Hilbert space X and X_0 be an invariant subspace for X. Let $A_1 := A_{|X_0}$ and $A_2 := A_{|X_0^{\perp}}$. Then

$$\sigma_{\operatorname{eig}}(A) = \sigma_{\operatorname{eig}}(A_1) \cup \sigma_{\operatorname{eig}}(A_2).$$

Proof. We observe that if $x \in X$ and $(u, v) \in X_0 \times X_0^{\perp}$ is such that x = u + v, then $x \neq 0$ if and only if at least one of u and v is nonzero. Further, using the invariance of X_0 and X_0^{\perp} and the fact that $X_0 \cap X_0^{\perp} = \{0\}$,

$$Ax = \lambda x \iff A_1 u = \lambda u \text{ and } A_2 v = \lambda v.$$

Thus, it follows that

$$\sigma_{\text{eig}}(A) = \sigma_{\text{eig}}(A_1) \cup \sigma_{\text{eig}}(A_2).$$

This completes the proof.

Lemma 4.4.3 Let A be a self adjoint operator on a Hilbert space X and let $\lambda_1, \ldots, \lambda_k$ be distinct eigenvalues of A. Let

$$X_0 = N(A - \lambda_1 I) + \ldots + N(A - \lambda_k I)$$

and let $A_1 := A_{|_{X_0}}$ and $A_2 := A_{|_{X_0^{\perp}}}$. Then

(i)
$$\sigma_{\text{eig}}(A_1) = \{\lambda_1, \dots, \lambda_k\},\$$

(ii)
$$\sigma_{\text{eig}}(A_2) = \sigma_{\text{eig}}(A) \setminus \{\lambda_1, \dots, \lambda_k\}.$$

Proof. (i) It can be easily seen that $\{\lambda_1, \ldots, \lambda_k\} \subseteq \sigma_{eig}(A_1)$. Now, let $\lambda \in \sigma_{eig}(A_1)$. Then there exists a nonzero $x \in X_0$ such that $Ax = \lambda x$. Let $x_i \in N(A - \lambda_i I)$ for $i = 1, \ldots, k$ such that

$$x = x_1 + \ldots + x_k.$$

Since $N(A - \lambda_i I) \perp N(A - \lambda_i I)$ for $i \neq j$, we have

$$||x||^2 = ||x_1||^2 + \ldots + ||x_k||^2.$$

Hence, $x_i \neq 0$ for some $i \in \{1, ..., k\}$. Also, since $Ax = \lambda x$ and

$$Ax - \lambda x = (Ax_1 - \lambda x_1) + \ldots + (Ax_k - \lambda x_k)$$

= $(\lambda_1 - \lambda)x_1 + \ldots + (\lambda_k - \lambda)x_k$,

it follows that $\lambda = \lambda_i \in {\{\lambda_1, \dots, \lambda_k\}}$.

(ii) Let $\lambda \in \sigma_{\operatorname{eig}}(A) \setminus \{\lambda_1, \ldots, \lambda_k\}$. By Lemma 4.4.2, we know that $\sigma_{\operatorname{eig}}(A) = \sigma_{\operatorname{eig}}(A_1) \cup \sigma_{\operatorname{eig}}(A_2)$. Hence, by part (i), we obtain $\lambda \in \sigma(A_2)$. Next, suppose that $\lambda \in \sigma_{\operatorname{eig}}(A_2)$. Then there exists a nonzero $x \in X_0^{\perp}$ such that $Ax = \lambda x$. Then, $\lambda \notin \{\lambda_1, \ldots, \lambda_k\}$, for if $\lambda = \lambda_i$ for some $i \in \{1, \ldots, k\}$, then we would have $Ax = \lambda_i x$ so that $x \in N(A - \lambda_i I) \subseteq X_0$, which would contradict the fact that $x \neq 0$. Thus, we have proved that $\lambda \in \sigma_{\operatorname{eig}}(A) \setminus \{\lambda_1, \ldots, \lambda_k\}$ if and only if $\lambda \in \sigma_{\operatorname{eig}}(A_2)$.

Now, we state and prove the main theorem of this book, the so called *spectral theorem for a compact self adjoint operator*.

Theorem 4.4.4 Let X be a Hilbert space and $A: X \to X$ be a nonzero compact self adjoint operator. Then

$$A = \sum_{i \in \Lambda} \lambda_i P_i,$$

where $\{\lambda_j : j \in \Lambda\}$ is a countable set of real numbers which are the eigenvalues of A and, for each $i \in \Lambda$, P_i is the orthogonal projection onto the eigen space $N(A - \lambda_i I)$.

Proof. We know that the eigenspectrum of A is a countable set, say $\sigma_{\text{eig}}(A) = \{\lambda_i : i \in \Lambda\}$, where $\Lambda = \{1, \dots, k\}$ for some $k \in \mathbb{N}$ if $\sigma_{\text{eig}}(A)$ is a finite set and $\Lambda = \mathbb{N}$ if $\sigma_{\text{eig}}(A)$ is an infinite set.

Case (i): $\sigma_{eig}(A)$ is a finite set.

Suppose $\sigma_{\text{eig}}(A) = \{\lambda_1, \ldots, \lambda_k\}$, where $\lambda_1, \ldots, \lambda_k$ are distinct. We know that each $N(A - \lambda_i I)$ is finite dimensional (cf. Theorem 4.1.8). Let $\{v_{ij} : j = 1, \ldots, n_i\}$ be an orthonormal basis of $N(A - \lambda_i I)$ for $i = 1, \ldots, k$. By Theorem 4.3.5), $N(A - \lambda_i I) \perp N(A - \lambda_j I)$ for $i \neq j$. Hence,

$$\bigcup_{i=1}^{k} \{v_{ij} : j = 1, \dots, n_i\}$$

is an orthonormal basis of

$$X_k := N(A - \lambda_1 I) + \dots + N(A - \lambda_k I).$$

By projection theorem, every $x \in X$ can be written uniquely as

$$x = u + v$$
 with $u \in X_k, v \in X_k^{\perp}$.

Note that

$$\langle x, v_{ij} \rangle = \langle u, v_{ij} \rangle \quad \forall i = 1, \dots, k, j = 1, \dots, n_i,$$

$$u = \sum_{i=1}^{k} \sum_{j=1}^{n_i} \langle u, v_{ij} \rangle v_{ij} = \sum_{i=1}^{k} \sum_{j=1}^{n_i} \langle x, v_{ij} \rangle v_{ij}$$

so that

$$Ax = Au + Av = \sum_{i=1}^{k} \lambda_i P_i x + Av,$$

where P_i is the orthogonal projection onto $N(A - \lambda_i)$, i.e.,

$$P_i x = \sum_{j=1}^{n_i} \langle x, v_{ij} \rangle v_{ij}, \quad x \in X.$$

Hence, it is enough to prove that Av=0. Since X_k is invariant under A, by Theorem 4.4.1, X_k^{\perp} is also invariant under A. Therefore, $A_k:=A_{\mid_{X_k^{\perp}}}$ is a compact self adjoint operator on X_k^{\perp} . We, in fact, show that $A_k=0$, which would imply that Av=0.

Suppose $A_k \neq 0$. Then, by Corollary 4.3.10, A_k will have a nonzero eigenvalue, say λ , which would be an eigenvalue of A as

well. Let $y \in X_k^{\perp}$ be a corresponding eigenvector. Then we have $Ay = \lambda y$ so that the $\lambda = \lambda_i$ for some i = 1, ..., k, and hence $y \in N(A - \lambda_i I) \subseteq X_k$. This is a contradiction to the fact that $y \neq 0$.

Case (ii): $\sigma_{eig}(A)$ is an infinite set.

Suppose that $\lambda_1, \lambda_2, \ldots$ are the distinct eigenvalues of A. Without loss of generality assume that $|\lambda_i| \geq |\lambda_{i+1}|$ for every $i \in \mathbb{N}$. As earlier, let

$$X_k := N(A - \lambda_1 I) + \dots + N(A - \lambda_k I).$$

Let $x \in X$. Again, by projection theorem,

$$x = u + v$$
 with $u \in X_k, v \in X_k^{\perp}$

and

$$Ax = \sum_{i=1}^{k} \lambda_i P_i x + Av,$$

where $||v|| \le ||x||$. Hence,

$$||Ax - \sum_{i=1}^{k} \lambda_i P_i x|| \le ||A_k|| \, ||x||,$$

where $A_k := A_{|_{X_k^{\perp}}}$ is a compact self adjoint operator on X_k^{\perp} . By Lemma 4.4.3,

$$\sigma_{\text{eig}}(A_k) = \sigma_{\text{eig}}(A) \setminus \{\lambda_1, \dots, \lambda_k\}.$$

Hence, $||A_k|| = |\lambda_{k+1}|$ so that

$$||Ax - \sum_{i=1}^{k} \lambda_i P_i x|| \le ||A_k|| \, ||x|| = |\lambda_{k+1}| \, ||x||$$

and hence,

$$||A - \sum_{i=1}^{k} \lambda_i P_i|| \le |\lambda_{k+1}| \quad \forall k \in \mathbb{N}.$$

Since $\lambda_{k+1} \to 0$ as $k \to \infty$ (cf. Theorem 4.1.8), we obtain

$$A = \sum_{i=1}^{\infty} \lambda_i P_i.$$

This completes the proof.

Corollary 4.4.5 Let A be a compact self adjoint operator. Then there exists a sequence (B_n) of self adjoint finite rank operators such that

$$||A - B_n|| \to 0$$
 as $n \to \infty$.

Proof. Follows from Theorem 4.4.4.

Recall that in obtaining Theorem 4.4.4, one of the primary fact about a nonzero compact self adjoint operator that we used is that it has a nonzero eigenvalue. We know that this fact need not be true for a non-self adjoint compact operator (cf. Exmaple 4.1.5). However, we do have a representation similar to the one as in Theorem 4.4.4 for any compact operator on a Hilbert space, in terms of the so called singular values.

Theorem 4.4.6 (Singular value representation) Let X and Y Hilbert spaces and $T: X \to Y$ be a compact operator. Then there exist a orthonormal basis $\{u_n : n \in \Lambda\}$ for $N(T)^{\perp}$, an orthonormal basis $\{v_n : n \in \Lambda\}$ for $\overline{R(T)}$ and $\{s_n : n \in \Lambda\} \subseteq [0, \infty)$ such that

$$Tx = \sum_{n \in \Lambda} s_n \langle x, u_n \rangle v_n \qquad \forall x \in X,$$

where $\Lambda = \{1, ..., k\}$ for some $k \in \mathbb{N}$ if $k = \operatorname{rank}(T) < \infty$, and $\Lambda = \mathbb{N}$ if $\operatorname{rank}(T) = \infty$.

Proof. Note that T^*T is a compact self adjoint operator so that by Theorem 4.4.4, there exists an orthonormal set $\{u_n : n \in \Lambda\}$ in X and $\{m_n : n \in \Lambda\} \subseteq [0, \infty)$

$$T^*Tx = \sum_{n \in \Lambda} \mu_n \langle x, u_n \rangle u_n, \quad x \in X,$$

where $\Lambda = \{1, \ldots, k\}$ for some $k \in \mathbb{N}$ or if $k = \operatorname{rank}(T) < \infty$, and $\Lambda = \mathbb{N}$ if $\operatorname{rank}(T) = \infty$. Also, we know that, if $\Lambda = \mathbb{N}$, then $\mu_n \to 0$ as $n \to \infty$. Note that

$$T^*Tu_n = \mu_n u_n \quad \forall n \in \Lambda.$$

Hence,

$$\mu_n = \langle \mu_n u_n, u_n \rangle = \langle T^* T u_n, u_n \rangle = \langle T u_n, T u_n \rangle = ||T u_n||^2 \ge 0.$$

Taking

$$s_n = \sqrt{\mu_n}$$
 and $v_n = \frac{Tu}{s_n} \quad \forall n \in \Lambda,$

we have

$$Tu_n = s_n v_n$$
 and $T^*v_n = s_n u_n$ $\forall n \in \Lambda$.

We also know that

$$\langle x, u_n \rangle = 0 \quad \forall n \in \Lambda \implies T^*Tx = 0 \implies x \in N(T^*T) = N(T)$$

so that $\{u_n : n \in \Lambda\}$ is an orthonormal basis of $N(T)^{\perp}$. Also, for every $x \in X$,

$$\langle Tx, v_n \rangle = \langle x, T^*v_n \rangle = \langle x, s_n u_n \rangle = s_n \langle x, u_n \rangle$$

so that

$$\langle Tx, v_n \rangle = 0 \quad \forall n \in \Lambda \quad \Longrightarrow \quad \langle x, u_n \rangle = 0 \quad \forall n \in \mathbb{N}$$

$$\Longrightarrow \quad x \in N(T) \Longrightarrow Tx = 0.$$

Hence, $\{v_n : n \in \Lambda\}$ is an orthonormal basis of R(T). Therefore, for every $x \in X$,

$$Tx = \sum_{n \in \mathbb{N}} \langle Tx, v_n \rangle v_n = \sum_{n \in \Lambda} \langle x, T^*v_n \rangle v_n = \sum_{n \in \Lambda} s_n \langle x, u_n \rangle v_n.$$

This completes the proof.

Corollary 4.4.7 Let X and Y Hilbert spaces and $T: X \to Y$ be a compact operator of infinite rank. Then there exists sequence of finite rank bounded operators T_n such that $||T - T_n|| \to 0$ as $n \to \infty$. In fact,

$$T_n x := \sum_{j=1}^n s_j \langle x, u_j \rangle v_j \qquad \forall x \in X,$$

where $\{(s_n, u_n, v_n) : n \in \mathbb{N}\}$ is as in Theorem 4.4.6, and

$$||T - T_n|| \le \sup_{j > n} s_j.$$

If s_n, u_n, v_n are as in Theorem 4.4.6, then we have

$$Tu_n = s_n v_n, \qquad T^* v_n = s_n u_n.$$

Definition 4.4.2 Let $T \in \mathcal{K}(X)$, where X is a Hilbert space. The set

$$\{(s_n, u_n, v_n) : n \in \Lambda\}$$

obtained as in Theorem 4.4.6 is called a **singular system** for A. The numbers s_n are called the **singular values** of A with corresponding **singular vectors** u_n, v_n for $n \in \Lambda$.

Let X be a Hilbert space and $T \in \mathcal{K}(X)$ be of finite rank, say rank (T) = k. Then, by Theorem 4.4.6,

$$Tx = \sum_{i=1}^{k} s_n \langle x, u_n \rangle v_n, \quad x \in X,$$

where $\{(s_n, u_n, v_n) : n = 1, \dots, k\}$ a singular system for A. Let us consider the operators

$$U: X \to \mathbb{K}^k, \quad B: \mathbb{K}^k \to \mathbb{K}^k, \quad V: \mathbb{K}^k \to Y,$$

defined by

$$Ux = \sum_{i=1}^{k} \langle x, u_i \rangle e_i,$$

$$B\left(\sum_{i=1}^{k} \alpha_i e_i\right) = \sum_{i=1}^{k} \alpha_i s_i e_i,$$

$$V\left(\sum_{i=1}^{k} \alpha_i e_i\right) = \sum_{i=1}^{k} \alpha_i v_i.$$

Then we have

$$T = VBU$$
.

If $X = \mathbb{K}^n$ and $Y = \mathbb{K}^m$, then we see that U, B, V are the matrices

$$U = [u_1 \, u_2 \, \cdots \, u_k], \quad B = \operatorname{diag}(s_1, \dots, s_k), \quad V = [v_1 \, v_2 \, \cdots \, v_k]^*.$$

In this special case, the representation T = VBU is called the **singular value decomposition** of T.

Remark 4.4.1 Singular value decomposition of operators is effectively used in the solution of ill-posed operator equations which are mathematical formulations of many of the practically important inverse problems (cf. Nair [6]).

4.5 Problems

- 1. Prove Theorem 4.1.2.
- 2. In Example 4.1.2. Let $X = c_{00}$ with $\|\cdot\|_p$ and $\lambda_n = 1/n$, $n \in \mathbb{N}$. Show that A is bijective, but $0 \in \sigma_{\text{app}}(A)$.
- 3. In Example 4.2.4, show that $\sigma_{app}(A) = [a, b]$.
- 4. Let t_1, \ldots, t_n be distinct points in [a, b]. Construct $u \in C[a, b]$ such that if A is the operator as in Example 4.2.4, then $\sigma_{\text{eig}}(A) = \{t_1, \ldots, t_n\}$.
- 5. Let (λ_n) be a bounded sequence of scalars and for $1 \leq p \leq \infty$, let $A: \ell^p \to \ell^p$ be defined by

$$(Ax)(j) = \lambda_j x(j), \quad j \in \mathbb{N}, \quad x \in \ell^p.$$

Prove that

$$\sigma_{\text{eig}}(A) = \{\lambda_n : n \in \mathbb{N}\} \text{ and } \sigma(A) = \text{cl } \{\lambda_n : n \in \mathbb{N}\}.$$

6. For $1 \leq p \leq \infty$, let A be the right shift operator on ℓ^p , that is,

$$Ax = (0, x(1), x(2), ...), \qquad x := (x(1), x(2), ...) \in \ell^p.$$

Prove that

$$\sigma_{\text{eig}}(A) = \emptyset$$
 and $\sigma(A) = \{\lambda \in \mathbb{K} : |\lambda| \le 1\}.$

7. For $1 \leq p \leq \infty$, let A be the right shift operator on ℓ^p , that is,

$$Ax = (0, x(1), x(2), x(3), ...), x := (x(1), x(2), ...) \in \ell^p.$$

Prove that

$$\sigma_{\text{eig}}(A) = \{ \lambda \in \mathbb{K} : |\lambda| < 1 \} \text{ and } \sigma(A) = \{ \lambda \in \mathbb{K} : |\lambda| \le 1 \}.$$

8. For $1 \leq p \leq \infty$, let A be the left shift operator on ℓ^p , that is,

$$Ax = (x(2), x(3), \ldots), \qquad x := (x(1), x(2), \ldots) \in \ell^p.$$

Prove that

$$\sigma_{\text{eig}}(A) = \{ \lambda \in \mathbb{K} : |\lambda| < 1 \} \text{ and } \sigma(A) = \{ \lambda \in \mathbb{K} : |\lambda| \le 1 \}.$$

- 9. Give an example in each of the following:
 - (a) An operator $A: \mathbb{R}^2 \to \mathbb{R}^2$ such that $\sigma(A) = \emptyset$.
 - (b) An operator $A: \mathbb{R}^2 \to \mathbb{R}^2$ such that $r_{\sigma}(A) < ||A||$.
- 10. For $1 \leq p \leq \infty$, let $X = \ell^p$ and $A : \ell^p \to \ell^p$ be defined by

$$(Ax)(j) = \frac{x(j)}{j}, \quad j \in \mathbb{N}, \quad x \in \ell^p.$$

What are $\sigma_{eig}(A)$, $\sigma_{app}(A)$ and $\sigma(A)$? Why?

11. Let X=C[a,b] with $\|\cdot\|_{\infty}$ and let $u\in C[a,b]$. Let $A:X\to X$ be defined by

$$(Ax)(t) = u(t)x(t), \qquad t \in [a, b], \quad x \in X.$$

Prove that $\sigma_{app}(A) = \operatorname{cl} \{u(t) : t \in [a, b]\}.$

- 12. Let $A \in \mathcal{B}(X)$, where X is a Hilbert space. Prove that $\lambda \in \sigma_{\text{eig}}(A)$ if and only if $R(A^* \bar{\lambda}I)$ not dense.
- 13. Let $A \in \mathcal{B}(X)$, where X is a Hilbert space, and let $\sigma(A) \neq \emptyset$ and $\mu \in \mathbb{K}$. Prove the following:
 - (a) $\sigma(A \mu I) = \{\lambda \mu : \lambda \in \sigma(A)\}.$
 - (b) If $\mu \in \rho(A)$, then $\sigma((A \mu I)^{-1}) = \left\{ \frac{1}{\lambda \mu} : \lambda \in \sigma(A) \right\}$.
 - (c) If A is a normal operator and $\mu \in \rho(A)$, then

$$r_{\sigma}((A - \mu I)^{-1}) = \frac{1}{\operatorname{dist}(\mu, \sigma(A))}.$$

- 14. Let A be a compact operator on a Hilbert space and $0 \neq \lambda \in \mathbb{K}$. Without using Riesz lemma prove that $N(A \lambda I)$ is finite dimensional.
- 15. For $A \in \mathcal{B}(X)$, prove that $||A||^2 = r_{\sigma}(A^*A)$.