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PREFACE

Purpose of the book. Functional analysis plays an increasing role in
the applied sciences as well as in mathematics itself. Consequently, it
becomes more and more desirable to introduce the student to the field
at an early stage of study. This book is intended to familiarize the
reader with the basic concepts, principles and methods of functional
analysis and its applications.

Since a textbook should be written for the student, I have sought
to bring basic parts of the field and related practical problems within
the comfortable grasp of senior undergraduate students or beginning
graduate students of mathematics and physics. I hope that graduate
engineering students may also profit from the presentation.

Prerequisites. The book is elementary. A background in under-
graduate mathematics, in particular, linear algebra and ordinary cal-
culus, is sufficient as a prerequisite. Measure theory is neither assumed
nor discussed. No knowledge in topology is required; the few consider-
ations involving compactness are self-contained. Complex analysis is
not needed, except in one of the later sections (Sec. 7.5), which is
optional, so that it can easily be omitted. Further help is given in
Appendix 1, which contains simple material for review and reference.

The book should therefore be accessible to a wide spectrum of
students and may also facilitate the transition between linear algebra
and advanced functional analysis.

Courses. The book is suitable for a one-semester course meeting five
hours per week or for a two-semester course meeting three hours per
week.

The book can also be utilized for shorter courses. In fact, chapters
can be omitted without destroying the continuity or making the rest of
the book a torso (for details see below). For instance:

Chapters 1 to 4 or 5 makes a very short course.

Chapters 1 to 4 and 7 is a course that includes spectral theory and
other topics.

Content and arrangement. Figure 1 shows that the material has been
organized into five major blocks.
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Spaces and Oparators Chaps. 1 to 3

Metric spaces O
Normed and Banach spaces
Linear operators

Inner product and Hilbert spaces O N

Fundamental Theorems Chap. 4

Hahn—Banach theorem
Uniform boundedness theorem
Open mapping theorem
Closed graph theorem

——— e

Applications of contractions S -
Approximation theory <————\—/

I Further Applications Chaps. 5 to 6
|
|
|

¥

Spectral Theory Chaps, 7 to 9

Basic concepts O—>—
Operators on normed spaces '
Compact operators 1
Self~adjoint operators -~

Unbounded Operators Chaps. 10 to 11

Unbounded operators
Quantum mechanics

Fig. 1. Content and arrangement of material

Hilbert space theory (Chap. 3) precedes the basic theorems on
normed and Banach spaces (Chap. 4) because it is simpler, contributes
additional examples in Chap. 4 and, more important, gives the student
a better feeling for the difficulties encountered in the transition from
Hilbert spaces to general Banach spaces.

Chapters 5 and 6 can be omitted. Hence after Chap. 4 onc can
proceed directly to the remaining chapters (7 to 11).
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Spectral theory is included in Chaps. 7 to 11. Here one has great
flexibility. One may only consider Chap. 7 or Chaps. 7 and 8. Or one
may focus on the basic concepts from Chap. 7 (Secs. 7.2. and 7.3) and
then immediately move to Chap. 9, which deals with the spectral
theory of bounded self-adjoint operators.

Applications are given at various places in the text. Chapters 5 and 6
are separate chapters on applications. They can be considered in
sequence, or earlier if so desired (see Fig. 1):

Chapter 5 may be taken up immediately after Chap. 1.

Chapter 6 may be taken up immediately after Chap. 3.
Chapters 5 and 6 are optional since they are not used as a prerequisite
in other chapters.

Chapter 11 is another separate chapter on applications; it deals
with unbounded operators (in quantum physics), but is kept practically
independent of Chap. 10.

Presentation. The material in this book has formed the basis of
lecture courses and seminars for undergraduate and graduate students
of mathematics, physics and engineering in this country, in Canada and
in Europe. The presentation is detailed, particularly in the earlier
chapters, in order to ease the way for the beginner. Less demanding
proofs are often preferred over slightly shorter but more advanced
ones.

In a book in which the concepts and methods are necessarily
abstract, great attention should be paid to motivations. I tried to do so
in the general discussion, also in carefully selecting a large number of
suitable examples, which include many simple ones. I hope that this
will help the student to realize that abstract concepts, ideas and
techniques were often suggested by more concrete matter. The student
should see that practical problems may serve as concrete models for
illustrating the abstract theory, as objects for which the theory can
yield concrete results and, moreover, as valuable sources of new ideas
and methods in the further development of the theory.

Problems and solutions. The book contains more than 900 care-
fully selected problems. These are intended to help the reader in better
understanding the text and developing skill and intuition in functional
analysis and its applications. Some problems are very simple, to
cncourage the beginner. Answers to odd-numbered problems are given
in Appendix 2. Actually, for many problems, Appendix 2 contains
complete solutions.
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The text of the book is self-contained, that is, proofs of theorems
and lemmas in the text are given in the text, not in the problem set.
Hence the development of the material does not depend on the
problems and omission of some or all of them does not destroy the
continuity of the presentation.

Reference material is included in Appendix 1, which contains some
elementary facts about sets, mappings, families, etc.

References to literature consisting of books and papers are collected in
Appendix 3, to help the reader in further study of the text material and
some related topics. All the papers and most of the books are quoted
in the text. A quotation consists of a name and a year. Here are two
examples. “There are separable Banach spaces without Schauder
bases; cf. P. Enflo (1973).” The reader will then find a corresponding
paper listed in Appendix 3 under Enflo, P. (1973). “The theorem was
generalized to complex vector spaces by H. F. Bohnenblust and A.
Sobczyk (1938).” This indicates that Appendix 3 lists a paper by these
authors which appeared in 1938.

Notations are explained in a list included after the table of contents.

\Acknowledgments. I want to thank Professors Howard Anton (Dre-
xel University), Helmut Florian (Technical University of Graz, Au-
stria), Gordon E. Latta (University of Virginia), Hwang-Wen Pu
(Texas A and M University), Paul V. Reichelderfer (Ohio University),
Hanno Rund (University of Arizona), Donald Sherbert (University of
Illinois) and Tim E. Traynor (University of Windsor) as well as many
of my former and present students for helpful comments and construc-
tive criticism.

I thank also John Wiley and Sons for their effective cooperation
and great care in preparing this edition of the book.

ErwIN KREYSZIG
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CHAPTER L

METRIC SPACES

Functional analysis is an abstract branch of mathematics that origi-
nated from classical analysis. Its development started about eighty
years ago, and nowadays functional analytic methods and results are
important in various fields of mathematics and its applications. The
impetus came from linear algebra, linear ordinary and partial differen-
tial equations, calculus of variations, approximation theory and, in
particular, linear integral equations, whose theory had the greatest
effect on the development and promotion of the modern ideas.
Mathematicians observed that problems from different fields often
enjoy related features and properties. This fact was used for an
effective unifying approach towards such problems, the unification
being obtained by the omission of unessential details. Hence the
advantage of such an abstract approach is that it concentrates on the
essential facts, so that these facts become clearly visible since the
investigator’s attention is not disturbed by unimportant details. In this
respect the abstract method is the simplest and most economical
method for treating mathematical systems. Since any such abstract
system will, in general, have various concrete realizations (concrete
models), we see that the abstract method is quite versatile in its
application to concrete situations. It helps to free the problem from
isolation and creates relations and transitions between fields which
have at first no contact with one another.

In the abstract approach, one usually starts from a set of elements
satisfying certain axioms. The nature of the elements is left unspecified.
This is done on purpose. The theory then consists of logical conse-
quences which result from the axioms and are derived as theorems once
and for all. This means that in this axiomatic fashion one obtains a
mathematical structure whose theory is developed in an abstract way.
Those general theorems can then later be applied to various special
sets satisfying those axioms.

For example, in algebra this approach is used in connection with
fields, rings and groups. In functional analysis we use it in connection
with abstract spaces; these are of basic importance, and we shall
consider some of them (Banach spaces, Hilbert spaces) in great detail.
We shall sce that in this connection the concept of a ““space” is used in
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a very wide and surprisingly general secnse. An abstract space will be a
set of (unspecified) elements satisfying certain axioms. And by choos-
ing different sets of axioms we shall obtain different types of abstract
spaces.

The idea of using abstract spaces in a systematic fashion goes back
to M. Fréchet (1906)' and is justified by its great success.

In this chapter we consider metric spaces. These are fundamental
in functional analysis because they play a role similar to that of the real
line R in calculus. In fact, they generalize R and have been created in
order to provide a basis for a unified treatment of important problems
from various branches of analysis.

We first define metric spaces and related concepts and illustrate
them with typical examples. Special spaces of practical importance are
discussed in detail. Much attention is paid to the concept of complete-
ness, a property which a metric space may or may not have. Complete-
ness will play a key role throughout the book.

Important concepts, brief orientation about main content

A metric space (cf. 1.1-1) is a set X with a metric on it. The metric
associates with any pair of elements (points) of X a distance. The
metric is defined axiomatically, the axioms being suggested by certain
simple properties of the familiar distance between points on the real
line R and the complex plane C. Basic examples (1.1-2 to 1.2-3) show
that the concept of a metric space is remarkably general. A very
important additional property which a metric space may have is
completeness (cf. 1.4-3), which is discussed in detail in Secs. 1.5 and
1.6. Another concept of theoretical and practical interest is separability
of a metric space (cf. 1.3-5). Separable metric spaces are simpler than
nonseparable ones.

1.1 Metric Space

In calculus we study functions defined on the real line R. A little
reflection shows that in limit processes and many other considerations
we use the fact that on R we have available a distance function, call it
d, which associates a distance d(x, y) =|x—y| with every pair of points

! References are given in Appendix 3, and we shall refer to books and papers listed
in Appendix 3 as is shown here.
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Fig. 2. Distance on R

x, y € R. Figure 2 illustrates the notation. In the plane and in “ordi-
nary” three-dimensional space the situation is similar.

In functional analysis we shall study more general ‘“‘spaces” and
“functions” defined on them. We arrive at a sufficiently general and
flexible concept of a “space” as follows. We replace the set of real
numbers underlying R by an abstract set X (set of elements whose
nature is left unspecified) and introduce on X a “distance function”
which has only a few of the most fundamental properties of the
distance function on R. But what do we mean by ‘“most fundamental”?
This question is far from being trivial. In fact, the choice and formula-
tion of axioms in a definition always needs experience, familiarity with
practical problems and a clear idea of the goal to be reached. In the
present case, a development of over sixty years has led to the following
concept which is basic and very useful in functional analysis and its
applications. :

1.1-1 Definition (Metric space, metric). A metric space is a pair
(X, d), where X is a set and d is a metric on X (or distance function on
X)), that is, a function defined® on X X X such that for all x, y, z€ X we
have:

(M1) d is real-valued, finite and nonnegative.

M2) d(x,y)=0 if and only if xX=y.

M3) d(x, y)=4d(y, x) (Symmetry).
(M4) d(x, y)=d(x, z)+d(z,y) (Triangle inequality). §

* The symbol x denotes the Cartesian product of sets: A x B is the set of all ordered
pairs (a, b), where ae A and be B. Hence X X X is the set of all ordered pairs of
clements of X.
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A few related terms are as follows. X is usually called the
underlying set of (X, d). Its elements are called points. For fixed x, y we
call the nonnegative number d(x, y) the distance from x to y. Proper-
ties (M1) to (M4) are the axioms of a metric. The name ‘‘triangle
inequality”’ is motivated by elementary geometry as shown in Fig. 3.

d(x, 2)

Fig. 3. Triangle inequality in the plane

From (M4) we obtain by induction the generalized triangle in-
equality

(1) d(x1, x,) = d(x1, X2) +d(x2, x3)+ + -+ +d(Xn—1, Xp).

Instead of (X, d) we may simply write X if there is no danger of
confusion.

A subspace (Y, d) of (X, d) is obtained if we take a subset Y < X
and restrict d to Y X Y; thus the metric on Y is the restriction®

d'_—_ d|y><y.

d is called the metric induced on Y by d.

We shall now list examples of metric spaces, some of which are
already familiar to the reader. To prove that these are metric spaces,
we must verify in each case that the axioms (M1) to (M4) are satisfied.
Ordinarily, for (M4) this requires more work than for (M1) to (M3).
However, in our present examples this will not be difficult, so that we
can leave it to the reader (cf. the problem set). More sophisticated

3 Appendix 1 contains a review on mappings which also includes the concept of a
restriction. :
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metric spaces for which (M4) is not so easily verified are included in
the next section.

Examples

1.1-2 Real line R. This is the set of all real numbers, taken with the
usual metric defined by

2) d(x, y)=|x—yl.

1.1-3 Euclidean plane R>. The metric space R, called the Euclidean
plane, is obtained if we take the set of ordered pairs of real numbers,
written® x =(&, &), y=(m1, m2), etc, and the Euclidean metric
defined by

(3) d(x, y) =&~ +(&—m) (20).
See Fig. 4.
Another metric space is obtained if we choose the same set as

before but another metric d, defined by

4 di(x, y) =&~ m|+|&—mal.

Mo

L x=(k, &)

| |
£ W >

Fig. 4. Euclidean metric on the plane

*We do not write x =(x,, x,) since xi, X,, - - - are needed later in connection with
sequences (starting in Sec. 1.4).
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This illustrates the important fact that from a given set (having morc
than one element) we can obtain various metric spaces by choosing
different metrics. (The metric space with metric d, does not have a
standard name. d; is sometimes called the taxicab metric. Why? R? is
sometimes denoted by E>.)

1.1-4 Three-dimensional Euclidean space R>. This metric space con-
sists of the set of ordered triples of real numbers x = (&, &, &),
y =(m1, M2, M3), etc., and the Euclidean metric defined by

(5) d(x, y)=J(&—m)*+(&— M) +(&—na) (z0).

1.1-5 Euclidean space R", unitary space C", complex plane C. The
previous examples are special cases of n-dimensional Euclidean space
R". This space is obtained if we take the set of all ordered n-tuples of
real numbers, written’

xz(gla”',gn)3 yz(nly"'ynn)

etc., and the Euclidean metric defined by

(6) d(x, y)=J(& —m)>+ -+ +(& — )’ (=0).

n-dimensional unitary space C" is the space of all ordered n-
tuples of complex numbers with metric defined by

) a&w=w&—mﬁ+~~ﬂ@—mﬁ (z0).

When n=1 this is the complex plane C with the usual metric defined
by

(8) d(x,y)=|x—yl.

(C" is sometimes called complex Euclidean n-space.)

1.1-6 Sequence space [”. This example and the next one give a first
impression of how surprisingly general the concept of a metric space is.
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As a set X we take the set of all bounded sequences of complex
numbers; that is, every element of X is a complex sequence

x=(&, &, 0) briefly x=(§)
such that for all j=1, 2, - - - we have
1&1= cx

where ¢, is a real number which may depend on x, but does not
depend on j. We choose the metric defined by

) d(x, y)=sup |§ —

where y=(n;)e X and N={1, 2, - - -}, and sup denotes the supremum
(least upper bound).” The metric space thus obtained is generally
denoted by I”. (This somewhat strange notation will be motivated by
1.2-3 in the next section.) [” is a sequence space because each element
of X (each point of X) is a sequence.

1.1-7 Function space Cla,b]. As a set X we take the set of all
real-valued functions x, y, - - - which are functions of an independerit
real variable t and are defined and continuous on a given closed interval
J=[a, b]. Choosing the metric defined by

(10) d(x, y)=ma]X|x(t)—y(t)|,

where max denotes the maximum, we obtain a metric space which is
denoted by Cla, b]. (The letter C suggests ‘“‘continuous.”) This is a
function space because every point of C[a, b] is a function.

The reader should realize the great difference between calculus,
where one ordinarily considers a single function or a few functions at a
time, and the present approach where a function becomes merely a
single point in a large space.

5The reader may wish to look at the review of sup and inf given in A1.6; cf.
Appendix 1.



8 Metric Spaces

1.1-8 Discrete metric space. We take any set X and on it the
so-called discrete metric for X, defined by

d(x, x)=0, d(x,y)=1 (x#y).

This space (X, d) is called a discrete metric space. It rarely occurs in
applications. However, we shall use it in examples for illustrating
certain concepts (and traps for the unwary). 1§

From 1.1-1 we see that a metric is defined in terms of axioms, and
we want to mention that axiomatic definitions are nowadays used in
many branches of mathematics. Their usefulness was generally recog-
nized after the publication of Hilbert’s work about the foundations of
geometry, and it is interesting to note that an investigation of one of
the oldest and simplest parts of mathematics had one of the most
important impacts on modern mathematics.

Problems

1. Show that the real line is a metric space.
2. Does d(x, y) =(x —y)* define a metric on the set of all real numbers?

3. Show that d(x, y)=+/|x —y| defines a metric on the set of all real
numbers.

4. Find all metrics on a set X consisting of two points. Consisting of one
point.

5. Let d be a metric on X. Determine all constants k such that (i) kd,
(ii) d + k is a metric on X.

6. Show that d in 1.1-6 satisfies the triangle inequality.

7. If A is the subspace of I consisting of all sequences of zeros and ones,
what is the induced metric on A?

8. Show that another metric d on the set X in 1.1-7 is defined by

a6 = [ k- yolat

a

9. Show that d in 1.1-8 is a metric.
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10. (Hamming distance) Let X be the set of all ordered triples of zeros
and ones. Show that X consists of eight elements and a metric d on X
is defined by d(x, y) = number of places where x and y have different
entries. (This space and similar spaces of n-tuples play a role in
switching and automata theory and coding. d(x, y) is called the Ham-
ming distance between x and y; cf. the paper by R. W. Hamming
(1950) listed in Appendix 3.)

11. Prove (1).

12. (Triangle inequality) The triangle inequality has several useful conse-
quences. For instance, using (1), show that

ld(x, y)—d(z, w)| = d(x, 2) +d(y, w).
13. Using the triangle inequality, show that
ld(x, z)—d(y, 2)| = d(x, y).
14. (Axioms of a metric) (M1) to (M4) could be replaced by other axioms

(without changing the definition). For instance, show that (M3) and
(M4) could be obtained from (M2) and

d(x, y)=d(z, x)+d(z,y).

15. Show that nonnegativity of a metric follows from (M2) to (M4).

1.2 Further Examples of Metric Spaces

To illustrate the concept of a metric space and the process of verifying
the axioms of a metric, in particular the triangle inequality (M4), we
give three more examples. The last example (space I?) is the most
important one of them in applications.

1.2-1 Sequence space s. This space consists of the set of all (bounded
or unbounded) sequences of complex numbers and the metric d
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defined by

v 1 |-l
d(x,y)= Y oW
(x,7) i; 2 1+|&—ml

where x =(&) and y=(n;). Note that the metric in Example 1.1-6
would not be suitable in the present case. (Why?)

Axioms (M1) to (M3) are satisfied, as we readily see. Let us verify
(M4). For this purpose we use the auxiliary function f defined on R by

t
f(t)=r+—;-

Differentiation gives f'(t)=1/(1+t)?, which is positive. Hence f is
monotone increasing. Consequently,
la+b|=|a|+|b|

implies
fla+bD=f(al+b)).

Writing this out and applying the triangle inequality for numbers, we
have
ja+bl __ |+l
1+|a+b| 1+|al+|b|
a1l
1+|a|+|b| 1+|a]+]|b]|

__lal___Ib|
“1+|al 1+]|b|”

In this inequality we let a = & —¢; and b = {;—m;, where z =({;). Then
a+b=¢&—m; and we have

& —mjl - 1& -4l 15—yl .
T+ —m| 14§ 1+]5— ]
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If we multiply both sides by 1/2' and sum over j from 1 to «, we obtain
d(x, y) on the left and the sum of d(x, z) and d(z, y) on the right:

d(x, y)=d(x, z)+d(z, y).

This establishes (M4) and proves that s is a metric space.

1.2-2 Space B(A) of bounded functions. By definition, each element
x € B(A) is a function defined and bounded on a given set A, and the
metric is defined by

d(x, y)= sup |x(6)—y(0)l,

where sup denotes the supremum (cf. the footnote in 1.1-6). We write
Bla, b] for B(A) in the case of an interval A =[q, b]<R.

Let us show that B(A) is a metric space. Clearly, (M1) and (M3)
hold. Also, d(x,x)=0 is obvious. Conversely, d(x,y)=0 implies
x(t)—y(t)=0 for all te A, so that x = y. This gives (M2). Furthermore,
for every te€ A we have

Ix(0)—yI=|x(0)—z(O)|+]| z(t) — y(1)|
=sup |x(6)— z(t)|+§u£ lz()—y ().

This shows that x —y is bounded on A. Since the bound given by the
expression in the second line does not depend on t, we may take the
supremum on the left and obtain (M4).

1.2-3 Space [I°, Hilbert sequence space I°, Holder and Minkowski
inequalities for sums. Let p=1 be a fixed real number. By definition,
each element in the space I is a sequence x =(&§)=(&, &, ) of
numbers such that |&|° +|&[P + - - - converges; thus

00

(1) Z &P <o (p=1, fixed)

j=1

and the metric is defined by

2) d(x, y)= (Z &~ ml” )
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where y = (n;) and Y|n;|° <. If we take only real sequences [satisfying
(1)], we get the real space I°, and if we take complex sequences
[satisfying (1)], we get the complex space I°. (Whenever the distinction
is essential, we can indicate it by a subscript R or C, respectively.)

In the case p=2 we have the famous Hilbert sequence space [*
with metric defined by

3 d(x, y)= \/ L lg—miP.

This space was introduced and studied by D. Hilbert (1912) in connec-
tion with integral equations and is the earliest example of what is now
called a Hilbert space. (We shall consider Hilbert spaces in great detail,
starting in Chap. 3.)

We prove that I is a metric space. Clearly, (2) satisfies (M1) to
(M3) provided the series on the right converges. We shall prove that it
does converge and that (M4) is satisfied. Proceeding stepwise, we shall
derive

(a) an auxiliary inequality,

(b) the Holder inequality from (a),

(¢) the Minkowski inequality from (b),
(d) the triangle inequality (M4) from (c).

The details are as follows.
(a) Let p>1 and define q by

) Ll
P q

p and q are then called conjugate exponents. This is a standard term.
From (4) we have

+
(s) 1="I,—qq, pa=p+aq, (p—D(g-1)=1.

Hence 1/(p—1)=q—1, so that

1

u=t"" implies t=u’""
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Let a and B be any positive numbers. Since af is the area of the
rectangle in Fig. 5, we thus obtain by integration the inequality

e B 14 q
(6) aBéI t"! dt+J u ! du=a—+3—.
o 0 P q

Note that this inequality is trivially true if a« =0 or B =0.

u = P! u = P!
; yd ; N
/
T (2) _ ’f 2 ”
u 7 1 u
! 1
0 0
0 [} 0 o
t —> t —>

Fig. 5. Inequality (6), where D corresponds to the first integral in (6) and @ to the
second

(b) Let (&) and () be such that
(7) YIEP=1, Ll =1.
Setting a =|§| and B =|7;|, we have from (6) the inequality
SRS D I
|§,~nf|ég|§j|"+alml“~
If we sum over j and use (7) and (4), we obtain

. 1 1
8 nil=—+—=1.
(8) Z'éﬂm p+q

We now take any nonzero x = ()€ !” and y =(n;)€!? and set

©) R - =

(Dak)" " (Zimt)
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Then (7) is satisfied, so that we may apply (8). Substituting (9) into (8)
and multiplying the resulting inequality by the product of the de-
nominators in (9), we arrive at the Holder inequality for sums

o ) 1/p el 1/q
a0) % leni=( 5 iak) (L k)

where p>1 and 1/p+1/q = 1. This inequality was given by O. Holder
(1889).

If p=2, then q =2 and (10) yields the Cauchy-Schwarz inequality
for sums

an 2, leml= \/k;lfklz\/ 2 |l

It is too early to say much about this case p =q =2 in which p equals
its conjugate g, but we want to make at least the brief remark that this
case will play a particular role in some of our later chapters and lead to
a space (a Hilbert space) which is ‘“nicer” than spaces with p#2.

(¢) We now prove the Minkowski inequality for sums

o 1/p o 1/p > 1/p
(S =5 ) (5 )

where x=(&)el” and y=(n;))€l’, and p=1. For finite sums this
inequality was given by H. Minkowski (1896).

For p =1 the inequality follows readily from the triangle inequal-
ity for numbers. Let p>1. To simplify the formulas we shall
write &+ m; = ;. The triangle inequality for numbers gives

lil” =&+ mjl s~
= (g1 +mDley”
Summing over j from 1 to any fixed n, we obtain
(13) oyl = Xl + X il

To the first sum on the right we apply the Holder inequality, finding

¥ lgllo = Ziak ] 2 tom o]
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On the right we simply have
(p—Dag=p

because pq=p+q; see (5). Treating the last sum in (13) in a similar
fashion, we obtain

L inllol~ = [T inde] " [Z o]

Together,
Zior ={[Ziar "+ [Zmp [ YL onr)

Dividing by the last factor on the right and noting that 1-1/q=1/p,
we obtain (12) with n instead of ». We now let n —— «. On the right
this yields two series which converge because x, y € [”. Hence the series
on the left also converges, and (12) is proved.

(d) From (12) it follows that for x and y in I” the series in
(2) converges. (12) also yields the triangle inequality. In fact, taking
any x,y,z€l’, writing z=({) and using the triangle inequality for
numbers and then (12), we obtain

1/p
d(x,y)= (Z & - nfl")
1/p
= (20§ - g1+15-nir)
1/p 1/p
= (Z & — {ilp) + (Z G- Ijlp)
=d(x, z)+d(z,y).
This completes the proof that [” is a metric space. 1
The inequalities (10) to (12) obtained in this proof are of general
importance as indispensable tools in various theoretical and practical

problems, and we shall apply them a number of times in our further
work.
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Problems
Show that in 1.2-1 we can obtain another metric by replacing 1/2’ with
;>0 such that ) u; converges.

Using (6), show that the geometric mean of two positive numbers does
not exceed the arithmetic mean.

Show that the Cauchy-Schwarz inequality (11) implies

(&l+ - - - +HeaD*=n(&l + - - +l&P).
(Space I°) Find a sequence which converges to 0, but is not in any
space [°, where 1= p <+o.
Find a sequence x which is in I° with p>1 but xé&I'.

(Diameter, bounded set) The diameter 5(A) of a nonempty set A in a
metric space (X, d) is defined to be

8(A)=sup d(x,y).

x,yEA

A is said to be bounded if 8§(A)<x. Show that A < B implies
S(A)=6(B).

Show that 8(A)=0 (cf. Prob. 6) if and only if A consists of a single
point.

(Distance between sets) The distance D(A, B) between two
nonempty subsets A and B of a metric space (X, d) is defined to be
D(A,B)= in£ d(a, b).
beB

Show that D does not define a metric on the power set of X. (For this
reason we use another symbol, D, but one that still reminds us of d.)

If ANB# ¢, show that D(A,B)=0 in Prob. 8. What about the
converse?

10. The distance D(x, B) from a point x to a non-empty subset B of (X, d)

is defined to be

D(x, B)= inf d(x, b),
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in agreement with Prob. 8. Show that for any x, ye X,
|D(x, B)—D(y, B)|=d(x, y).

11. If (X, d) is any metric space, show that another metric on X is defined
by

d(x,y)

d(x, )’)=m

and X is bounded in the metric d.

12. Show that the union of two bounded sets A and B in a metric space is
a bounded set. (Definition in Prob. 6.)

13. (Product of metric spaces) The Cartesian product X = X; X X, of two
metric spaces (X, d,) and (X, d,) can be made into a metric space
(X, d) in many ways. For instance, show that a metric d is defined by

d(x, y) =d(x1, y1) +dy(x2, ¥2),

where x = (x1, X2), ¥ = (1, y2)-

14. Show that another metric on X in Prob. 13 is defined by

d(x, y) = di(x1, y:)* + da(x2, y2)*.
15. Show that a third metric on X in Prob. 13 is defined by
j(x, y)=max [di(xy, y1), da(x, y5)].

('The metrics in Probs. 13 to 15 are of practical importance, and other metrics
on X are possible.)

1.3 Open Set, Closed Set, Neighborhood

There is a considerable number of auxiliary concepts which play a role
in connection with metric spaces. Those which we shall need are
included in this section. Hence the section contains many concepts
(more than any other section of the book), but the reader will notice
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that several of them become quite familiar when applied to Euclidean
space. Of course this is a great convenience and shows the advantage
of the terminology which is inspired by classical geometry.

We first consider important types of subsets of a given metric
space X = (X, d).

1.3-1 Definition (Ball and sphere). Given a point xo€ X and a real
number r>0, we define® three types of sets:

(a) B(xo;r)={xe X |d(x, xo)<r} (Open ball)
@) () Bxo;r)={xeX|d(x,x0)=r}  (Closed ball)
() S(xo;r) ={xeX|d(x,x0)=r}  (Sphere)

In all three cases, xo is called the center and r the radius. W

We see that an open ball of radius r is the set of all points in X
whose distance from the center of the ball is less than r. Furthermore,
the definition immediately implies that

() S(xo05 1) = B(x0; 1)~ B(x0; 1).

Warning. In working with metric spaces, it is a great advantage
that we use a terminology which is analogous to that of Euclidean
geometry. However, we should beware of a danger, namely, of assum-
ing that balls and spheres in an arbitrary metric space enjoy the same
properties as balls and spheres in R>. This is not so. An unusual
property is that a sphere can be empty. For example, in a discrete
metric space 1.1-8 we have S(xo; r)= J if r# 1. (What about spheres of
radius 1 in this case?) Another unusual property will be mentioned
later.

Let us proceed to the next two concepts, which are related.

1.3-2 Definition (Open set, closed set). A subset M of a metric space
X is said to be open if it contains a ball about each of its points. A
subset K of X is said to be closed if its complement (in X) is open, that
is, K= X—K is open. 1

The reader will easily see from this definition that an open ball is
an open set and a closed ball is a closed set.

6 Some familiarity with the usual set-theoretic notations is assumed, but a review is
included in Appendix 1.
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An open ball B(xy; &) of radius £ is often called an e&-
neighborhood of x,. (Here, £ >0, by Def. 1.3-1.) By a neighborhood’
of xo we mean any subset of X which contains an e-neighborhood of
Xo-

We see directly from the definition that every neighborhood of x,
contains Xo; in other words, x, is a point of each of its neighborhoods.
And if N is a neighborhood of xo and Nc M, then M is also a
neighborhood of x,.

We call x, an interior point of a set M = X if M is a neighborhood
of xo. The interior of M is the set of all interior points of M and may
be denoted by M° or Int(M), but there is no generally accepted
notation. Int (M) is open and is the largest open set contained in M.

It is not difficult to show that the collection of all open subsets of
X, call it J, has the following properties:

(T) YUeJ, XeJ.
(T2) The union of any members of J is a member of J.

(T3) The intersection of finitely many members of J is a member
of J.

Proof. (T1) follows by noting that’ & is open since J has no
elements and, obviously, X is open. We prove (T2). Any point x of the
union U of open sets belongs to (at least) one of these sets, call it M,
and M contains a ball B about x since M is open. Then B < U, by the
definition of a union. This proves (T2). Finally, if y is any point of the
intersection of open sets M, - -+, M,, then each M; contains a ball
about y and a smallest of these balls is contained in that intersection.
‘This proves (T3). 1

We mention that the properties (T1) to (T3) are so fundamental
that one wants to retain them in a more general setting. Accordingly,
once defines a topological space (X, 9) to be a set X and a collection
of subsets of X such that J satisfies the axioms (T1) to (T3). The set I
is called a topology for X. From this definition we have:

A metric space is a topological space.

"In the older literature, ncighborhoods used to be open sets, but this requirement
has been dropped from the definition.
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Open sets also play a role in connection with continuous map-
pings, where continuity is a natural generalization of the continuity
known from calculus and is defined as follows.

1.3-3 Definition (Continuous mapping). Let X =(X,d)and Y =(Y, d)
be metric spaces. A mapping T: X —> Y is said to be continuous at
a point xo€ X if for every £ >0 there is a 8 >0 such that® (see Fig. 6)

d(Tx, Txo)< e for all x satisfying d(x, x0) < 8.

T is said to be continuous if it is continuous at every point of X. 1

Fig. 6. Inequalities in Def. 1.3-3 illustrated in 2the case of Euclidean planes X =R? and
Y=R -

It is important and interesting that continuous mappings can be
characterized in terms of open sets as follows.

1.3-4 Theorem (Continuous mapping). A mapping T of a metric
space X into a metric space Y is continuous if and only if the inverse
image of any open subset of Y is an open subset of X.

Proof. (a) Suppose that T is continuous. Let S< Y be open and
So the inverse image of S. If So=(J, it is open. Let So # J. For any
Xo€ S let yo= Txo. Since S is open, it contains an £-neighborhood N
of yo; see Fig. 7. Since T is continuous, x, has a §-neighborhood N,
which is mapped into N. Since N< S, we have Ny< So, so that Sy is
open because xo€ So was arbitrary.

(b) Conversely, assume that the inverse image of every
open set in Y is an open set in X. Then for every xo€ X and any

®In calculus we usually write y = f(x). A corresponding notation for the image of x
under T would be T(x). However, to simplify formulas in functional analysis, it is
customary to omit the parentheses and write Tx. A review of the definition of a mapping
is included in A1.2; cf. Appendix 1.
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(Space X) (Space Y)

Fig. 7. Notation in part (a) of the proof of Theorem 1.3-4

e-neighborhood N of Tx,, the inverse image Ny of N is open, since N
is open, and N, contains xo. Hence Ny also contains a §-neighborhood
of xo, which is mapped into N because N, is mapped into N. Conse-
quently, by the definition, T is continuous at x,. Since xo€ X was
arbitrary, T is continuous. 1

We shall now introduce two more concepts, which are related. Let
M be a subset of a metric space X. Then a point x, of X (which may or
may not be a point of M) is called an accumulation point of M (or limit
point of M) if every neighborhood of x, contains at least one point
y € M distinct from xo. The set consisting of the points of M and the
accumulation points of M is called the closure of M and is denoted by

M.

It is the smallest closed set containing M.
Before we go on, we mention another unusual property of balls in
a metric space. Whereas in R> the closure B(xo;r) of an open ball
B(xo; 1) is the closed ball B(xo;r), this may not hold in a general
metric space. We invite the reader to illustrate this with an example.
Using the concept of the closure, let us give a definition which will
be of particular importance in our further work:

1.3-5 Definition (Dense set, separable space). A subset M of a
metric space X is said to be dense in X if

M=X.
X is said to be separable if it has a countable subset which is dense in

X. (For the definition of a countable set, see Al.1 in Appendix 1 if
necessary.) 1
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Hence if M is dense in X, then every ball in X, no matter how
small, will contain points of M; or, in other words, in this case there is
no point x € X which has a neighborhood that does not contain points
of M.

We shall see later that separable metric spaces are somewhat
simpler than nonseparable ones. For the time being, let us consider
some important examples of separable and nonseparable spaces, so
that we may become familiar with these basic concepts.

Examples

1.3-6 Real line R. The real line R is separable.

Proof. The set Q of all rational numbers is countable and is
dense in R.

1.3-7 Complex plane C. The complex plane C is separable.

Proof. A countable dense subset of C is the set of all complex
numbers whose real and imaginary parts are both rational.

1.3-8 Discrete metric space. A discrete metric space X is separable if
and only if X is countable. (Cf. 1.1-8.)

Proof. The kind of metric implies that no proper subset of X can
be dense in X. Hence the only dense set in X is X itself, and the
statement follows.

1.3-9 Space I”. The space I” is not separable. (Cf. 1.1-6.)

Proof. Let y=(m1, m2, M3, " * *) be a sequence of zeros and ones.
Then yel”. With y we associate the real number y whose binary
representation is

We now use the facts that the set of points in the interval [0, 1] is
uncountable, each § €[0, 1] has a binary representation, and different
y’s have different binary representations. Hence there are uncountably
many sequences of zeros and ones. The metric on I” shows that any
two of them which are not equal must be of distance 1 apart. If we let
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each of these sequences be the center of a small ball, say, of radius 1/3,
these balls do not intersect and we have uncountably many of them. If
M is any dense set in [”, each of these nonintersecting balls must
contain an element of M. Hence M cannot be countable. Since M was
an arbitrary dense set, this shows that ! cannot have dense subsets
which are countable. Consequently, I” is not separable.

1.3-10 Space I°. The space I’ with 1=p< +o is separable. (Cf.
1.2-3)

Proof. Let M be the set of all sequences y of the form

yz(”h,nz,"',’an,O,"')

where n is any positive integer and the m;’s are rational. M is
countable. We show that M is dense in I*. Let x = (&) € I be arbitrary.
Then for every £ >0 there is an n (depending on ¢) such that

Y e <

14
j=n+1 2

because on the left we have the remainder of a converging series. Since
the rationals are dense in R, for each § there is a rational #; close to it.
Hence we can find a ye M satisfying

8P

- — [P <
jZ;lé nA 2

It follows that

[de )P = L lg—nl"+ 2 | <e”

j=n+

We thus have d(x, y)<e and see that M is dense in [”.

Problems

1. Justify the terms “open ball” and “closed ball” by proving that (a) any
open ball is an open set, (b) any closed ball is a closed set.

2. What is an open ball B(x,; 1) on R? In C? (Cf. 1.1-5.) In C[a, b]? (Cf.
1.1-7.) Explain Fig. 8.
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Fig. 8. Region containing the graphs of all xe C[—1,1] which constitute the -

neighborhood, with € = 1/2, of xo€ C[— 1, 1] given by x,(t) = t*

3. Consider C[0,2#] and determine the smallest r such that y € B(x; r),

6.

where x(t)=sint and y(t)=cost.

Show that any nonempty set A < (X, d) is open if and only if it is a
union of open balls.

It is important to realize that certain sets may be open and closed at
the same time. (a) Show that this is always the case for X and .
(b) Show that in a discrete metric space X (cf. 1.1-8), every subset is
open and closed.

If x, is an accumulation point of a set A =(X,d), show that any
neighborhood of x, contains infinitely many points of A.

Describe the closure of each of the following subsets. (a) The integers
on R, (b) the rational numbers on R, (c) the complex numbers with
rational real and imaginary parts in C, (d) the disk {z | |z]<1}=cC.

. Show that the closure B(x,;r) of an open ball B(xy;r) in a metric

10.

11

space can differ from the closed ball B(x,; r).

. Showthat AcA, A=A AUB=AUB, ANB< ANB.

A point x not belonging to a closed set M < (X, d) always has a
nonzero distance from M. To prove this, show that x € A if and only if
D(x, A)=0 (cf. Prob. 10, Sec. 1.2); here A is any nonempty subset of
X.

(Boundary) A boundary point x of a set A =(X, d) is a point of X
(which may or may not belong to A) such that every neighborhood of x
contains points of A as well as points not belonging to A; and the
boundary (or frontier) of A is the set of all boundary points of A.
Describe the boundary of (a) the intervals (—1, 1), [--1, 1), [-1,1] on
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R; (b) the set of all rational numbers on R; (c) the disks {z | |z|<1}eC
and {z I lz|=1}<=C.

12. (Space B[a,b]) Show that B[a,b], a<b, is not separable. (Cf.
1.2-2))

13. Show that a metric space X is separable if and only if X has a
countable subset Y with the following property. For every € >0 and
every x € X there is a y € Y such that d(x, y)<e.

14. (Continuous mapping) Show that a mapping T: X — Y is continu-
ous if and only if the inverse image of any closed set M < Y is a closed
set in X.

15. Show that the image of an open set under a continuous mapping need
not be open. ’

1.4 Convergence, Cauchy Sequence, Completeness

We know that sequences of real numbers play an important role in
calculus, and it is the metric on R which enables us to define the basic
concept of convergence of such a sequence. The same holds for
sequences of complex numbers; in this case we have to use the metric
on the complex plane. In an arbitrary metric space X = (X, d) the
situation is quite similar, that is, we may consider a sequence (x,) of
elements x4, x,, - - - of X and use the metric d to define convergence in
a fashion analogous to that in calculus:

1.4-1 Definition (Convergence of a sequence, limit). A sequence (x,.)
in a metric space X = (X, d) is said to converge or to be convergent if
there is an x € X such that

lim d(x., x)=0.

x is called the limit of (x,) and we write

lim x, =x

n-—»oo
or, simply,

X, —> X.
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We say that (x,) converges to x or has the limit x. If (x,) is not
convergent, it is said to be divergent. 1

How is the metric d being used in this definition? We see that d
yields the sequence of real numbers a, = d(x,, x) whose convergence
defines that of (x,). Hence if x, — x, an £ >0 being given, there is an
N = N(g) such that all x,, with n>> N lie in the £-neighborhood B(x; €)
of x.

To avoid trivial misunderstandings, we note that the limit of a
convergent sequence must be a point of the space X in 1.4-1. For
instance, let X be the open interval (0, 1) on R with the usual metric
defined by d(x,y)=|x—y|. Then the sequence (3, 3, %, --) is not
convergent since 0, the point to which the sequence “wants to con-
verge,” is not in X. We shall return to this and similar situations later
in the present section.

Let us first show that two familiar properties of a convergent
sequence (uniqueness of the limit and boundedness) carry over from
calculus to our present much more general setting.

We call a nonempty subset M < X a bounded set if its diameter

8(M)= sup d(x,y)

x,yeM

is finite. And we call a sequence (x,) in X a bounded sequence if the
corresponding point set is a bounded subset of X.
Obviously, if M is bounded, then M < B(xo; r), where xqe X is
any point and r is a (sufficiently large) real number, and conversely.
Our assertion is now as follows.

1.4-2 Lemma (Boundedness, limit). Let X =(X, d) be a metric space.
Then:

(@) A convergent sequence in X is bounded and its limit is unique.

(b) If x, —> x and y, —> y in X, then d(x,, y.) —> d(x, y).

Proof. (a) Suppose that x, — x. Then, taking € =1, we can
find an N such that d(x,, x)<1 for all n> N. Hence by the triangle
inequality (M4), Sec. 1.1, for all n we have d(x,, x)<1+a where

a=max{d(xq, x), -, d(xn, x)}.
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This shows that (x,) is bounded. Assuming that x,——> x and
X, —> z, we obtain from (M4)

0=d(x,z)=d(x, x,)+d(x,, z)—> 0+0

and the uniqueness x = z of the limit follows from (M2).

(b) By (1), Sec. 1.1, we have

Ad(Xn, yn) = d(x,, x)+d(x, y)+d(y, yu).

Hence we obtain
d(Xn, Ya)— d(x, y) = d(Xn, )+ d(yn, y)

and a similar inequality by interchanging x,, and x as well as y, and y
and multiplying by —1. Together,

|d (X, yu)—d(x, Y)|= d (x4, x)+ d(yn, y) —> 0
as n—>o, 1

We shall now define the concept of completeness of a metric space,
which will be basic in our further work. We shall see that completeness
does not follow from (M1) to (M4) in Sec. 1.1, since there are
incomplete (not complete) metric spaces. In other words, completeness
is an additional property which a metric space may or may not have. It
has various consequences which make complete metric spaces ‘“much
nicer and simpler” than incomplete ones—what this means will be-
come clearer and clearer as we proceed.

Let us first remember from calculus that a sequence (x,,) of real or
complex numbers converges on the real line R or in the complex plane
C, respectively, if and only if it satisfies the Cauchy convergence
criterion, that is, if and only if for every given £>0 there is an
N = N(¢) such that

[X = xn| < & for all m, n> N.

(A proof is included in A1.7; cf. Appendix 1.) Here |x,, —x,| is the
distance d(x, x,) from x,, to x, on the real line R or in the complex
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plane C. Hence we can write the inequality of the Cauchy criterion in
the form

d(xXm, xp)< € (m, n>N).

And if a sequence (x,) satisfies the condition of the Cauchy criterion,
we may call it a Cauchy sequence. Then the Cauchy criterion simply
says that a sequence of real or complex numbers converges on R or in
C if and only if it is a Cauchy sequence. This refers to the situation in
R or C. Unfortunately, in more general spaces the situation may be
more complicated, and there may be Cauchy sequences which do not
converge. Such a space is then lacking a property which is so important
that it deserves a name, namely, completeness. This consideration
motivates the following definition, which was first given by M. Fréchet
(1906).

1.4-3 Definition (Cauchy sequence, completeness). A sequence (x,)
in a metric space X =(X, d) is said to be-Cauchy (or fundamental) if
for every £ >0 there is an N = N(g) such that

(1) A (X, X)) < & for every m, n> N.

The space X is said to be complete if every Cauchy sequence in X
converges (that is, has a limit which is an element of X). 1§

Expressed in terms of completeness, the Cauchy convergence
criterion implies the following.

1.4-4 Theorem (Real line, complex plane). The real line and the
complex plane are complete metric spaces.

More generally, we now see directly from the definition that
complete metric spaces are precisely those in which the Cauchy condi-
tion (1) continues to be necessary and sufficient for convergence.

Complete and incomplete metric spaces that are important in
applications will be considered in the next section in a systematic
fashion.

For the time being let us mention a few simple incomplete spaces
which we can readily obtain. Omission of a point a from the real line
yields the incomplete space R —{a}. More drastically, by the omission
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of all irrational numbers we have the rational line Q, which is incom-
plete. An open interval (a, b) with the metric induced from R is
another incomplete metric space, and so on.

It is clear from the definition that in an arbitrary metric space,
condition (1) may no longer be sufficient for convergence since the
space may be incomplete. A good understanding of the whole situation
is important; so let us consider a simple example. We take X = (0, 1],
with the usual metric defined by d(x, y)=|x—y|, and the sequence
(xn), where x, =1/n and n=1, 2, - - - . This is a Cauchy sequence, but
it does not converge, because the point 0 (to which it “wants to
converge”) is not a point of X. This also illustrates that the concept of
convergence is not an intrinsic property of the sequence itself but also
depends on the space in which the sequence lies. In other words, a
convergent sequence is not convergent ‘“‘on its own” but it must
converge to some point in the space.

Although condition (1) is no longer sufficient for convergence, it is
worth noting that it continues to be necessary for convergence. In fact,
we readily obtain the following result.

1.4-5 Theorem (Convergent sequence). Every convergent sequence in
a metric space is a Cauchy sequence.

Proof. 1If x, — x, then for every £ >0 there is an N = N(¢) such
that

d(x, x)<§ for all n> N.
Hence by the triangle inequality we obtain for m, n> N

Ay %) = d (s %)+ d(x, xn)<§+§ ==

This shows that (x,) is Cauchy. 1

We shall see that quite a number of basic results, for instance in
the theory of linear operators, will depend on the completeness of the
corresponding spaces. Completeness of the real line R is also the main
reason why in calculus we use R rather than the rational line Q (the set
of all rational numbers with the metric induced from R).

Let us continue and finish this section with three theorems that are
related to convergence and completeness and will be needed later.
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1.4-6 Theorem (Closure, closed set). Let M be a nonempty subset of
a metric space (X, d) and M its closure as defined in the previous section.
Then:

(@) xeM if and only if there is a sequence (x,) in M such that
Xp — X.

(b) M is closed if and only if the situation x,, € M, x,, —> x implies
that x e M.

Proof. (a) Let xeM. If xeM, a sequence of that type is
(x, x, - - ). If x¢ M, it is a point of accumulation of M. Hence for each
n=1, 2,--- the ball B(x;1/n) contains an x,€M, and x, —> x
because 1/n ——> 0 as n —— o,

Conversely, if (x,) is in M and x, — x, then xe M or every
neighborhood of x contains points x,# x, so that x is a point of
accumulation of M. Hence x € M, by the definition of the closure.

(b) M is closed if and only if M =M, so that (b) follows
readily from (a). 1

1.4-7 Theorem (Complete subspace). A subspace M of a complete
metric space X is itself complete if and only if the set M is closed in X.

Proof. Let M be complete. By 1.4-6(a), for every x € M there is
a sequence (x,) in M which converges to x. Since (x,) is Cauchy by
1.4-5 and M is complete, (x,) converges in M, the limit being unique
by 1.4-2. Hence x € M. This proves that M is closed because x € M was
arbitrary.

Conversely, let M be closed and (x,) Cauchy in M. Then
X, —> x€ X, which implies xe M by 1.4-6(a), and xeM since
M = M by assumption. Hence the arbitrary Cauchy sequence (x,) con-
verges in M, which proves completeness of M. &

This theorem is very useful, and we shall need it quite often.
Example 1.5-3 in the next section includes the first application, which
is typical.

The last of our present three theorems shows the importance of
convergence of sequences in connection with the continuity of a

mapping.

1.4-8 Theorem (Continuous mapping). A mapping T: X —> Y of a
metric space (X, d) into a metric space (Y, d) is continuous at a point
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xo€ X if and only if
Xp —> Xo implies Tx, —> Txo.

Proof. Assume T to be continuous at x,; cf. Def. 1.3-3. Then for
a given € >0 there is a § >0 such that

d(x, Xo) < & implies d(Tx, Txo)<e.
Let x, — xo. Then there is an N such that for all n > N we have
d(x,, x0) <8.
Hence for all n> N,
d(Txn, Txo)<e.

By definition this means that Tx, —> Txo.
Conversely, we assume that

X, —> Xo implies Tx, — Txo

and prove that then T is continuous at x,. Suppose this is false. Then
there is an € >0 such that for every & >0 there is an x # x, satisfying

d(x, x0)<$é but d(Tx, Txo) = e.

In particular, for & = 1/n there is an x, satisfying
1 ~
d(x,, xo) < o but d(Tx,, Txo)=e.

Clearly x,, — xo but (Tx, ) does not converge to Tx,. This contradicts
Tx, — Tx, and proves the theorem. 1

Problems

1. (Subsequence) If a sequence (x,) in a metric space X is convergent
and has limit x, show that every subsequence (x,,) of (x,) is convergent
and has the same limit x.
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2. If (x,) is Cauchy and has a convergent subsequence, say, x, — X,
show that (x,) is convergent with the limit x.

3. Show that x, — x if and only if for every neighborhood V of x there
is an integer nqy such that x, € V for all n>n,.

4. (Boundedness) Show that a Cauchy sequence is bounded.

5. Is boundedness of a sequence in a metric space sufficient for the
sequence to be Cauchy? Convergent?

6. If (x,) and (y,) are Cauchy sequences in a metric space (X, d), show
that (a,), where a, = d(x,, y.), converges. Give illustrative examples.

7. Give an indirect proof of Lemma 1.4-2(b).

8. If d, and d, are metrics on the same set X and there are positive
numbers a and b such that for all x, ye X,

ad,(x, y) = d,(x, y) = bdy(x, y),
show that the Cauchy sequences in (X, d;) and (X, d,) are the same.

9. Using Prob. 8, show that the metric spaces in Probs. 13 to 15, Sec. 1.2,
have the same Cauchy sequences.

10. Using the completeness of R, prove completeness of C.

1.5 Examples. Completeness Proofs

In various applications a set X is given (for instance, a set of sequences
or a set of functions), and X is made into a metric space. This we do by
choosing a metric d on X. The remaining task is then to find out
whether (X, d) has the desirable property of being complete. To prove
completeness, we take an arbitrary Cauchy sequence (x,) in X and
show that it converges in X. For different spaces, such proofs may vary
in complexity, but they have approximately the same general pattern:

(i) Construct an element x (to be used as a limit).
(ii) Prove that x is in the space considered.
(iii) Prove convergence x, —> x (in the sense of the metric).

We shall present completeness proofs for some metric spaces
which occur quite frequently in theoretical and practical investigations.
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The reader will notice that in these cases (Examples 1.5-1 to 1.5-5) we
get help from the completeness of the real line or the complex plane
(Theorem 1.4-4). This is typical.

Examples

1.5-1 Completeness of R" and C". Euclidean space R" and unitary
space C" are complete. (Cf. 1.1-5.)

Proof. We first consider R". We remember that the metric on R"
(the Euclidean metric) is defined by

d(x, y)= (_ )"

where x = (&) and y =(n;); cf. (6) in Sec. 1.1. We consider any Cauchy
sequence (x,) in R", writing X, =(&™, -+, &v). Since (x,) is
Cauchy, for every £ >0 there is an N such that

n 1/2
(1) d(Xm, x,) = ( (&™ - E'))2> <e (m,r>N).
j=1
Squaring, we have for m, r>N and j=1,---,n
Em—g)’<e®  and V- gl<e

This shows that for each fixed j, (1=j=n), the sequence (£, &2, - - )

is a Cauchy sequence of real numbers. It converges by Theorem 1.4-4,
say, ,(-'") —— ¢ as m——>o. Using these n limits, we define

x=(&,- -, &). Clearly, x e R". From (1), with r —> ,
d(xm, x)=¢ (m>N).
This shows that x is the limit of (x,,) and proves completeness of R"

because (x,,) was an arbitrary Cauchy sequence. Completeness of C"
follows from Theorem 1.4-4 by the same method of proof.

1.5-2 Completeness of I”. The space I” is complete. (Cf. 1.1-6.)
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Proof. Let (x.) be any Cauchy sequence in the space I, where
X = (&5, €™, - - ). Since the metric on [* is given by

d(x, y)=sup |&—n|
1

[where x =(&) and y =(m;)] and (x,,) is Cauchy, for any £ >0 there is
an N such that for all m, n> N,

d(xm, ) =sup | — | <e.
i
A fortiori, for every fixed j,
) & - <e (m,n>N).

Hence for every fixed j, the sequence (&, &,---) is a Cauchy
sequence of numbers. It converges by Theorem 1.4-4, say, &™ — &
as m —> . Using these infinitely many limits &,, &, - -, we define
x=(&, &, --) and show that xel” and x, —> x. From (2) with

n—> o we have

2% & —&l=e (m>N).

Since x,, = (¢£™) € I”, there isareal number k,, such that |&™| = ki forall j.
Hence by the triangle inequality

gl=1&— &1+ 1E™ = e+ knn (m>N).
This inequality holds for every j, and the right-hand side does not

involve j. Hence (&) is a bounded sequence of numbers. This implies
that x = (&) e I”. Also, from (2*) we obtain

d(xm, x)=sup [E™ — &= e (m>N).

This shows that x,,— x. Since (x,) was an arbitrary Cauchy se-
quence, [” is complete.

1.5-3 Completeness of ¢. The space ¢ consists of all convergent
sequences x = (&) of complex numbers, with the metric induced from
the space [”.
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The space c is complete.

Proof. c is a subspace of [ and we show that c is closed in [”, so
that completeness then follows from Theorem 1.4-7.

We consider any x = (&) € ¢, the closure of c. By 1.4-6(a) there are
X, = (&™) € ¢ such that x, —> x. Hence, given any & >0, there is an N
such that for n=N and all j we have

|6M — &= d(x, x><§,

in particular, for n=N and all j. Since xn€c, its terms &~ form a
convergent sequence. Such a sequence is Cauchy. Hence there is an N;
such that

6 — €0 <3 Gy k= Ny).
The triangle inequality now yields for all j, k=N, the following
inequality:
& —&l=1g— &V +EV -6+ 160 - &l <e.

This shows that the sequence x = (&) is convergent. Hence x € c. Since
x € ¢ was arbitrary, this proves closedness of ¢ in [”, and completeness
of ¢ follows from 1.4-7. 1

1.5-4 Completeness of I”. The space I” is complete; here p is fixed and
1=p<+w. (Cf. 1.2-3.)

Proof. Let (x,) be any Cauchy sequence in the space [°, where
X = (&™), €5, - - ). Then for every & >0 there is an N such that for all
m, n> N,

X 1/p

3) A Xy X) = ( 2| 5'")—£5~"’|") <e.
j=1

It follows that for every j=1, 2,--- we have

(4) l&§™ - & <e (m, n> N).

We choose a fixed j. From (4) we see that (&, &2, - - ) is a Cauchy
sequence of numbers. It converges since R and C are complete (cf.
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1.4-4), say, €™ —— & as m —> ». Using these limits, we define
x=(&1, &, - - ) and show that xel” and x,, — «x.
From (3) we have for all m, n>N

k
2 g™ —gmp <er (k=1,2,---).
=1
Letting n —— %, we obtain for m> N
k
Y lEm—glr=e (k=1,2,--°).
i=1
We may now let k —— o; then for m >N
(5) Y g™ —glr=en.
i=1

This shows that x,,—x=(&™ —&)el®. Since x,,€l”, it follows by
means of the Minkowski inequality (12), Sec. 1.2, that

X=Xxm+(x—x,)el’
Furthermore, the series in (5) represents [d(x,,, x)]”, so that (5) implies
that x,, — x. Since (x,,,) was an arbitrary Cauchy sequence in [?, this

proves completeness of I°, where 1=p<+4w. 1
p p

1.5-5 Completeness of C[a, b]. The function space Cla, b] is com-
plete; here [a, b] is any given closed interval on R. (Cf. 1.1-7.)

Proof. Let (x,,) be any Cauchy sequence in Cla, b]. Then, given
any £ >0, there is an N such that for all m, n> N we have

(6) d (%, Xn) = max [ (D —xa (D) < €

where J=[a, b]. Hence for any fixed t =ty,€ J,
1% (t0) — x4 (0)| < & (m, n>N).

This shows that (x1(t), x2(to), - - ) is a Cauchy sequence of real num-
bers. Since R is complete (cf. 1.4-4), the sequence converges, say,
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X (to) —> x(to) as m ——> . In this way we can associate with each
teJ a unique real number x(t). This defines (pointwise) a function x
on J, and we show that x € C[a, b] and x,, — x.

From (6) with n —— © we have

max |Xm(D)—x()| = (m>N).

Hence for every teJ,

X —x(D)|=¢ (m>N).

This shows that (x,,(¢)) converges to x(t) uniformly on J. Since the x,,’s
are continuous on J and the convergence is uniform, the limit function
x is continuous on J, as is well known from calculus (cf. also Prob. 9).
Hence xeC(C[a,b]. Also x, —> x. This proves completeness of
Cla, b]. 1

In 1.1-7 as well as here we assumed the functions x to be
real-valued, for simplicity. We may call this space the real C[a, b].
Similarly, we obtain the complex Cla, b] if we take complex-valued
continuous functions defined on [a, b]< R. This space is complete, too.
The proof is almost the same as before.

Furthermore, that proof also shows the following fact.

1.5-6 Theorem (Uniform convergence). Convergence x,, —> x in the
space Cla, b] is uniform convergence, that is, (x,,) converges uniformly
on [a, b] to x.

Hence the metric on Cla, b] describes uniform convergence on
[a, b] and, for this reason, is sometimes called the uniform metric.

To gain a good understanding of completeness and related con-
cepts, let us finally look at some

Examples of Incomplete Metric Spaces
1.5-7 Space Q. This is the set of all rational numbers with the usual
metric given by d(x,y)=|x—y|, where x, yeQ, and is called the

rational line. Q is not complete. (Proof?)

1.5-8 Polynomials. Let X be the set of all polynomials considered as
functions of ¢ on some finite closed interval J=[a, b] and define a
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metric d on X by
d(x, y)=max |x(1)=y(0)|.

This metric space (X, d) is not complete. In fact, an example of a
Cauchy sequence without limit in X is given by any sequence of polyno-
mials which converges uniformly on J to a continuous function, not a
polynomial.

1.5-9 Continuous functions. Let X be the set of all continuous
real-valued functions on J=[0, 1], and let

d(x,y)= L |x(£)—y(1)] dt.

This metric space (X, d) is not complete.

Proof. The functions x, in Fig. 9 form a Cauchy sequence
because d(xm, x.) is the area of the triangle in Fig. 10, and for every
given £ >0,

A (X xn) < € when m, n>1/e.

Let us show that this Cauchy sequence does not converge. We have

xn(0)=0if te[0, 3], X (1) =1 if te[am, 1]
L
Ll

R
3

~ -
¥
X

p—y

Fig. 9. Example 1.5-9 Fig. 10. Example 1.5-9
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where a,, =1/2+1/m. Hence for every x € X,

d (Xpm, x)¥J % (1) = x(2)| dt

1/2 a,, 1
=J 1x(t)|dt+j |xm(t)—x(t)|dt+J [1—x(¢)| dt.

0 1/ Arm

Since the integrands are nonnegative, so is each integral on the right.
Hence d(xm, x) —> 0 would imply that each integral approaches zero
and, since x is continuous, we should have

x(t)=0if t€[0,3), x()=1if te, 1].

But this is impossible for a continuous function. Hence (x,.) does not
converge, that is, does not have a limit in X. This proves that X is not
complete. 0

Problems

1. Let a, beR and a<b. Show that the open interval (a, b) is an
incomplete subspace of R, whereas the closed interval [a, b] is com-
plete.

2. Let X be the space of all ordered n-tuples x =(&,, -+, &,) of real
numbers and

d(x, y)=max|§ —mn|

where y = (7;). Show that (X, d) is complete.

3. Let M <I” be the subspace consisting of all sequences x = () with at
most finitely many nonzero terms. Find a Cauchy sequence in M which
does not converge in M, so that M is not complete.

4.> Show that M in Prob. 3 is not complete by applying Theorem 1.4-7.

5. Show that the set X of all integers with metric d defined by
d(m,n)=|m—n| is a complete metric space.
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6.

8

10.

11

12.

13.

14.

15.

Metric Spaces

Show that the set of all real numbers constitutes an incomplete metric
space if we choose

d(x, y) =|arc tan x —arc tan y|.

Let X be the set of all positive integers and d(m,n)=|{m™'—n7}|.

Show that (X, d) is not complete.

(Space Cla, b]) Show that the subspace Y = Cl[a, b] consisting of all
x € C[a, b] such that x(a)=x(b) is complete.

In 1.5-5 we referred to the following theorem of calculus. If a sequence
(x,,) of continuous functions on [a, b] converges on [a, b] and the
convergence is uniform on [a, b], then the limit function x is continu-
ous on [a, b]. Prove this theorem.

(Discrete metric) Show that a discrete metric space (cf. 1.1-8) is
complete.

(Space s) Show that in the space s (cf. 1.2-1) we have x, — x if and
only if &”— ¢ for all j=1, 2, - -, where x, = (&™) and x = (£).

Using Prob. 11, show that the sequence space s in 1.2-1 is complete.
Show that in 1.5-9, another Cauchy sequence is (x,), where
x.()=n HO0=t=n"2, x,()=t7 fnl=st=1.

Show that the Cauchy sequence in Prob. 13 does not converge.

Let X be the metric space of all real sequences x = (&) each of which
has only finitely many nonzero terms, and d(x, y)=Y |&—mn,|, where
y =(n;). Note that this is a finite sum but the number of terms depends
on x and y. Show that (x,) with x, = (&™),

gv=j? forj=1,---,n  and m=0 forj>n

is Cauchy but does not converge.
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1.6 Completion of Metric Spaces

We know that the rational line Q is not complete (cf. 1.5-7) but can be
“enlarged” to the real line R which is complete. And this ‘“‘comple-
tion” R of Q is such that Q is dense (cf. 1.3-5) in R. It is quite
important that an arbitrary incomplete metric space can be ‘“‘com-
pleted” in a similar fashion, as we shall see. For a convenient precise
formulation we use the following two related concepts, which also have
various other applications.

1.6-1 Deﬁnitio~n (Isometric mapping, isometric spaces). Let
X =(X, d) and X = (X, d) be metric spaces. Then:

(@) A mapping T of X into X is said to be isometric or an
isometry if T preserves distances, that is, if for all x, ye X,

d(Tx, Ty)=d(x, y),

where Tx and Ty are the images of x and y, respectively.

(b) The space X is said to be isometric with the space f( if there
exists a bijective’ isometry of X onto X. The spaces X and X are then
called isometric spaces. 1

Hence isometric spaces may differ at most by the nature of their
points but are indistinguishable from the viewpoint of metric. And in
any study in which the nature of the points does not matter, we may
regard the two spaces as identical—as two copies of the same ‘“‘ab-
stract” space.

We can now state and prove the theorem that every metric space
can be completed. The space X occurring in this theorem is called the
completion of the given space X.

1.6-2 Theorem (Completion). For a metric space X =(X, d) there
exists a complete metric space X = (X, d) which has a subspace W that is
isometric with X and is dense in X. This space X is unique except for
isometries, that is, if X is any complete metric space having a dense
subspace W isometric with X, then X and X are isometric.

? One-to-one and onto. For a review of some elementary concepts related to
mappings, sce Al.2 in Appendix 1. Note that an isometric mapping is always injective.
(Why?)
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Proof. The proof is somewhat lengthy but straightforward. We

subdivide it into four steps (a) to (d). We construct:

(@) X=(X, d)

(b) an isometry T of X onto W, where wW=X.
Then we prove:

(c) completeness of X,

(d) uniqueness of X, except for isometries.
Roughly speaking, our task will be the assignment of suitable limits to
Cauchy sequences in X that do not converge. However, we should not
introduce “‘too many” limits, but take into account that certain se-
quences ‘“‘may want to converge with the same limit” since the terms of
those sequences ‘“‘ultimately come arbitrarily close to each other.”” This
intuitive idea can be expressed mathematically in terms of a suitable
equivalence relation [see (1), below]. This is not artificial but is
suggested by the process of completion of the rational line mentioned
at the beginning of the section. The details of the proof are as follows.

(a) Construction of X=(X,d). Let (x,) and (x,) be
Cauchy sequences in X. Define (x,) to be equivalent'® to (x,’), written
() ~ ("), if

(1) lim d(x,, x,")=0.

n-—o

Let X be the set of all equivalence classes X, ¥,--- of Cauchy
sequences thus obtained. We write (x,)€ X to mean that (x,) is a
member of £ (a representative of the class X). We now set

2) d(%,§)= lim d(x., yn)
where (x,)€ % and (y,) € §. We show that this limit exists. We have

d(xn7 yn) :<= d(xn’ xm) + d(xm, ym) + d(Yma Yn);
hence we obtain

d(xm Yn) - d(xm, Ym) = d(xm xm) + d(Yma Yn)

and a similar inequality with m and n interchanged. Together,

3) |d(Xn, Yn) = d Xy Yo )| = d (X, Xon) + A(Yimy Y-

10 For a review of the concept of equivalence, see Al.4 in Appendix 1.
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Since (x,) and (y,) are Cauchy, we can make the right side as small as
we please. This implies that the limit in (2) exists because R is
complete.

We must also show that the limit in (2) is independent of the
particular choice of representatives. In fact, if (x,)~(x.) and
(yn)~(yn,)a then bY (1)3

|d(%ns Yn) = d (%", Y ) = d(Xn, %)+ A (Y Yu') —> 0

as n — o, which implies the assertion
lim d(xn, ya) = lim d(x.", ya')-

We prove that d in (2)Ais a metric on X. Obviously, d satisfies
(M1) in Sec. 1.1 as well as d(%, £) =0 and (M3). Furthermore,

A& 9)=0 = ()~ —=> £=J
gives (M2), and (M4) for d follows from

d(Xn, Yn) = d(Xn, 2n) + (20, Yu)
by letting np—— .

(b) Construction of an isometry T: X — W< X. With
each be X we associate the class b€ X which contains the constant
Cauchy sequence (b, b, - - -). This defines a mapping T: X —> W onto
the subspace W = T(X)< X. The mapping T is given by b——> b = Tb,
where (b, b, - - -)e b. We see that T is an isometry since (2) becomes
simply

d(b, &)=d(b, c);

here ¢ is the class of (y,) where y,=c for all n. Any isometry is
injective, and T: X —> W is surjective since T(X)= W. Hence W
and X are isometric; cf. Def. 1.6-1(b).

We show that W is dense in X. We consider any £eX. Let
(xn) € %. For every & >0 there is an N such that

d (%, xN)<§ (n>N).
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Let (xn, X, - - *) € #x. Then Xy € W. By (2),
ﬂ&ﬁ@=ﬁmd@mmo§§<a
This shows that every e-neighborhood of the arbitrary % € X contains an
element of W. Hence W is dense in X.
(© Completeness of X. Let (£,) be any Cauchy sequence
in X. Since W is dense in X for every %, there is a 2, € W such that
A 1
4) d(%,, 2,)<—.
n
Hence by the triangle inequality,
A(Zmy 20) S Aoy Z) + A(Fomy $n) + d (B, £0)
1 . 1
<—+dRpm, %) +—
m n

and this is less than any given &€ >0 for sufficiently large m and n
because (%,,) is Cauchy. Hence (Z,,) is Cauchy. Since T: X — W is
isometric and 2,, € W, the sequence (z,,), where z,, = T '3, is Cauchy
in X. Let £ € X be the class to which (z.,) belongs. We show that X is
the limit of (%,). By (4),

d(%ny £) = d(%ny 20) +d (2, %)
(5)

<l+a@m£)

S

Since (z,,) € X (see right before) and Z,, € W, so that (z,, z,,, Zn, * - *) € Z,,,
the inequality (5) becomes

o 1
d(%,, £)<;+ lim d(z., zm)

and the right side is smaller than any given ¢ >0 for sufficiently large
n. Hence the arbitrary Cauchy sequence (%,) in X has the limit £ € X,
and X is complete.
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@\'

Fig. 11. Notations in part (d) of the proof of Theorem 1.6-2

(d) Uniqueness of X except for isometries. If (X’ d) is
another complete metric space with a subspace W dense in X and
isometric with X, then for any %, § € X we have sequences (X,), (¥,) in
W such that X, — X and y, — ¥; hence

~

d(%, 9)= lim d(%., 5.)
follows from
ld(%, §)— d(%, $u)|=d(& %) +d(H, ) —> 0

[the 1nequa11ty being similar to (3)]. Slnce W is isometric with W< X
and W = X, the distances on X and X must be the same. Hence X and
X are isometric. 11

We shall see in the next two chapters (in particular in 2.3-2, 3.1-5
and 3.2-3) that this theorem has basic applications to individual
incomplete spaces as well as to whole classes of such spaces.

Problems

1. Show that if a subspace Y of a metric space consists of finitely many
points, then Y is complete.

2. What is the completion of (X, d), where X is the set of all rational
numbers and d(x, y)=|x—y|?
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=

o

3

10.

11.

12.

13

14.

Metric Spaces

What is the completion of a discrete metric space X? (Cf. 1.1-8.)

If X, and X, are isometric and X, is complete, show that X, is
complete.

(Homeomorphism) A homeomorphism is a continuous bijective map-
ping T: X —— Y whose inverse is continuous; the metric spaces X
and Y are then said to be homeomorphic. (a) Show that if X and Y are
isometric, they are homeomorphic. (b) Illustrate with an example that
a complete and an incomplete metric space may be homeomorphic.

Show that C[0, 1] and C[a, b] are isometric.

If (X, d) is complete, show that (X, d), where d = d/(1 +d), is complete.

Show that in Prob. 7, completeness of (X, d) implies completeness of
(X, d).

If (x,) and (x,') in (X, d) are such that (1) holds and x, —> [, show
that (x,") converges and has the limit L

If (x,) and (x,") are convergent sequences in a metric space (X, d) and
have the same limit [, show that they satisfy (1).

Show that (1) defines an equivalence relation on the set of all Cauchy
sequences of elements of X.

If (x,) is Cauchy in (X, d) and (x,’) in X satisfies (1), show that (x,') is
Cauchy in X.

(Pseudometric) A finite pseudometric on a set X is a function
d: XxX —— R satisfying (M1), (M3), (M4), Sec. 1.1, and

(M2%) d(x, x)=0.

What is the difference between a metric and a pseudometric? Show
that d(x, y)=|& —n,| defines a pseudometric on the set of all ordered
pairs of real numbers, where x = (£;, &), y =(m1, n). (We mention that
some authors use the term semimetric instead of pseudometric.)

Does

d(x, y>=[ (D)~ y(0) dt

a
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define a metric or pseudometric on X if X is (i) the set of all
real-valued continuous functions on [a, b], (ii) the set of all real-valued
Riemann integrable functions on [a, b]?

15. If (X, d) is a pseudometric space, we call a set
B(xo; r)={xe X | d(x, xo)<r} (r>0)

an open ball in X with center x, and radius r. (Note that this is
analogous to 1.3-1.) What are open balls of radius 1 in Prob. 13?






CHAPTER i
NORMED SPACES.
BANACH SPACES

Particularly useful and important metric spaces are obtained if we take
a vector space and define on it a metric by means of a norm. The
resulting space is called a normed space. If it is a complete metric
space, it is called a Banach space. The theory of normed spaces, in
particular Banach spaces, and the theory of linear operators defined on
them are the most highly developed parts of functional analysis. The
present chapter is devoted to the basic ideas of those theories.

Important concepts, brief orientation about main content

A normed space (cf. 2.2-1) is a vector space (cf. 2.1-1) with a
metric defined by a norm (cf. 2.2-1); the latter generalizes the length of
a vector in the plane or in three-dimensional space. A Banach space
(cf. 2.2-1) is a normed space which is a complete metric space. A
normed space has a completion which is a Banach space (cf. 2.3-2). In
a normed space we can also define and use infinite series (cf. Sec. 2.3).

A mapping from a normed space X into a normed space Y is
called an operator. A mapping from X into the scalar field R or C is
called a functional. Of particular importance are so-called bounded
linear operators (cf. 2.7-1) and bounded linear functionals (cf. 2.8-2)
since they are continuous and take advantage of the vector space
structure. In fact, Theorem 2.7-9 states that a linear operator is
continuous if and only if it is bounded. This is a fundamental result.
And vector spaces are of importance here mainly because of the linear
operators and functionals they carry.

It is basic that the set of all bounded linear operators from a given
normed space X into a given normed space Y can be made into a
normed space (cf. 2.10-1), which is denoted by B(X, Y). Similarly, the
set of all bounded linear functionals on X becomes a normed space,
which is called the dual space X' of X (cf. 2.10-3).

In analysis, infinite dimensional normed spaces are more impor-
tant than finite dimensional ones. The latter are simpler (cf. Secs. 2.4,
2.5), and operators on them can be represented by matrices (cf. Sec.
2.9).
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Remark on notation
We denote spaces by X and Y, operators by capital letters
(preferably T), the image of an x under T by Tx (without paren-
theses), functionals by lowercase letters (preferably f) and the value of f
at an x by f(x) (with parentheses). This is a widely used practice.

2.1 Vector Space

Vector spaces play a role in many branches of mathematics and its
applications. In fact, in various practical (and theoretical) problems we
have a set X whose elements may be vectors in three-dimensional
space, or sequences of numbers, or functions, and these elements can
be added and multiplied by constants (numbers) in a natural way, the
result being again an element of X. Such concrete situations suggest
the concept of a vector space as defined below. The definition will
involve a general field K, but in functional analysis, K will be R or C.
The elements of K are called scalars; hence in our case they will be
real or complex numbers.

2.1-1 Definition (Vector space). A vector space (or linear space) over
a field K is a nonempty set X of elements x, y,--- (called vectors)
together with two algebraic operations. These operations are called
vector addition and multiplication of vectors by scalars, that is, by
elements of K.

Vector addition associates with every ordered pair (x, y) of vectors
a vector x + v, called the sum of x and y, in such a way that the following
properties hold." Vector addition is commutative and associative, that
is, for all vectors we have

xty=y+x

x+(y+z)=(x+y)+z;

furthermore, there exists a vector 0, called the zero vector, and for
every vector x there exists a vector —x, such that for all vectors we

! Readers familiar with groups will notice that we can summarize the defining
properties of vector addition by saying that X is an additive abelian group.
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have
x+0=x

x+(—x)=0.

Multiplication by scalars associates with every vector x and scalar
a a vector ax (also written xa), called the product of @ and x, in such a
way that for all vectors x, y and scalars a, B we have

a(Bx)=(aB)x

1x=x
and the distributive laws

a(x+y)=ax+ay
(a+B)x =ax+Bx. 1

From the definition we see that vector addition is a mapping
X XX—>X, whereas multiplication by scalars is a mapping
KxX—X.

K is called the scalar field (or coefficient field) of the vector space
X, and X is called a real vector space if K=R (the field of real
numbers), and a complex vector space if K =C (the field of complex
numbers?).

The use of 0 for the scalar 0 as well as for the zero vector should
cause no confusion, in general. If desirable for clarity, we can denote
the zero vector by 6.

The reader may prove that for all vectors and scalars,

(la) Ox=19
(1b) afd=10
and

2) -Dx=—x.

2 Remember that R and C also denote the real line and the complex plane,
respectively (cf. 1.1-2 and 1.1-5), but we need not use other letters here since there is
little danger of confusion.
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Examples

2.1-2 Space R". This is the Euclidean space introduced in 1.1-5, the
underlying set being the set of all n-tuples of real numbers, written
x=(0&, ", &), y=(M1, ", M), etc., and we now see that this is a real
vector space with the two algebraic operations defined in the usual
fashion

x+y:(§1+n1,”'a§n+nn)

ax =(aé, -+, a,) (x eR).

The next examples are of a similar nature because in each of them we
shall recognize a previously defined space as a vector space.

2.1-3 Space C". This space was defined in 1.1-5. It consists of
all ordered n-tuples of complex numbers x=(&,: -, &),
y=(M1, ", M), €tc, and is a complex vector space with the
algebraic operations defined as in the previous example, where now
aeC.

2.1-4 Space Cla, b]. This space was defined in 1.1-7. Each point of
this space is a continuous real-valued function on [a, b]. The set of all
these functions forms a real vector space with the algebraic operations
defined in the usual way:

(x+y)O)=x()+y(t)
(ax)(t) = ax(t) (aeR).

In fact, x+y and ax are continuous real-valued functions defined on
[a,b] if x and y are such functions and « is real.

Other important vector spaces of functions are (a) the vector
space B(A) in 1.2-2, (b) the vector space of all differentiable functions
on R, and (c) the vector space of all real-valued functions on [a, b]
which are integrable in some sense.

2.1-5 Space 1. This space was introduced in 1.2-3. It is a vector
space with the algebraic operations defined as usual in connection with
sequences, that is,

(¢, &, )+t Mo, - )=(E1tm, &+ M2, 0 )
a(f[, §2’ o ') = (agl, a§27 o ')'
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In fact, x = (&) e I’ and y =(n;) € I’ implies x +y € I, as follows readily
from the Minkowski inequality (12) in Sec. 1.2; also ax €[>

Other vector spaces whose points are sequences are I~ in 1.1-6, I” in
1.2-3, where 1=p<+x, and s in 1.2-1. 1

A subspace of a vector space X is a nonempty subset Y of X such
that for all y;, y.€ Y and all scalars «, B we have ay, +By.€ Y. Hence
Y is itself a vector space, the two algebraic operations being those
induced from X.

A special subspace of X is the improper subspace Y =X. Every
other subspace of X (#{0}) is called proper.

Another special subspace of any vector space X is Y ={0}.

A linear combination of vectors xy, - - -, x,, of a vector space X is
an expression of the form

aq1Xq +a2x2+ ot QX

where the coefficients ay, - - -, a,,, are any scalars.
For any nonempty subset M < X the set of all linear combinations
of vectors of M is called the span of M, written

span M.

Obviously, this is a subspace Y of X, and we say that Y is spanned or
generated by M.

We shall now introduce two important related concepts which will
be used over and over again.

2.1-6 Definition (Linear independence, linear dependence). Linear
independence and dependence of a given set M of vectors xq,- - -, x,
(r=1) in a vector space X are defined by means of the equation

(3) a1x1+a2x2+ s +a,x,=0,
where ay,---,a, are scalars. Clearly, equation (3) holds for
a;=ay="--=a,=0. If this is the only r-tuple of scalars for which (3)

holds, the set M is said to be linearly independent. M is said to be lin-
early dependent if M is not linearly independent, that is, if (3) also holds
for some r-tuple of scalars, not all zero.

An arbitrary subset M of X is said to be linearly independent if
cvery nonempty finite subset of M is linearly independent. M is said to
be linearly dependent if M is not linearly independent. 1
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A motivation for this terminology results from the fact that if
M={x,,---,x} is linearly dependent, at least one vector of M can
be written as a linear combination of the others; for instance, if (3)
holds with an «, # 0, then M is linearly dependent and we may solve
(3) for x, to get

X, = lel R +Br—1xr—1 (B] = —aj/ar)~

We can use the concepts of linear dependence and independence
to define the dimension of a vector space, starting as follows.

2.1-7 Definition (Finite and infinite dimensional vector spaces). A
vector space X is said to be finite dimensional if there is a positive
integer n such that X contains a linearly independent set of n vectors
whereas any set of n+1 or more vectors of X is linearly dependent. n
is called the dimension of X, written n =dim X. By definition, X ={0}
is finite dimensional and dim X = 0. If X is not finite dimensional, it is
said to be infinite dimensional. 1

In analysis, infinite dimensional vector spaces are of greater inter-
est than finite dimensional ones. For instance, C[a, b] and [? are
infinite dimensional, whereas R" and C" are n-dimensional.

If dim X =n, a linearly independent n-tuple of vectors of X is
called a basis for X (or a basis in X). If {e,- - -, e,} is a basis for X,
every x € X has a unique representation as a linear combination of the
basis vectors:

X =aie;t+ - +aue,.

For instance, a basis for R" is

This is sometimes called the canonical basis for R".
More generally, if X is any vector space, not necessarily finite
dimensional, and B is a linearly independent subset of X which spans



2.1 Vector Space 55

X, then B is called a basis (or Hamel basis) for X. Hence if B is a basis
for X, then every nonzero x € X has a unique representation as a linear
combination of (finitely many!) elements of B with nonzero scalars as
coefficients.

Every vector space X # {0} has a basis.

In the finite dimensional case this is clear. For arbitrary infinite
dimensional vector spaces an existence proof will be given by the use
of Zorn’s lemma. This lemma involves several concepts whose expla-
nation would take us some time and, since at present a number of
other things are more important to us, we do not pause but postpone
that existence proof to Sec. 4.1, where we must introduce Zorn’s
lemma for another purpose.

We mention that all bases for a given (finite or infinite'dimen-
sional) vector space X have the same cardinal number. (A proof would
require somewhat more advanced tools from set theory; cf. M. M. Day
(1973), p. 3.) This number is called the dimension of X. Note that this
includes and extends Def. 2.1-7.

Later we shall need the following simple

2.1-8 Theorem (Dimension of a subspace). Let X be an n-
dimensional vector space. Then any proper subspace Y of X has dimen-
sion less than n.

Proof. If n=0, then X={0} and has no proper subspace. If
dim Y=0, then Y={0}, and X#Y implies dim X=1. Clearly,
dim Y=dim X =n. If dim Y were n, then Y would have a basis of n
elements, which would also be a basis for X since dim X = n, so that
X =Y. This shows that any linearly independent set of vectors in Y
must have fewer than n elements, and dim Y<n. 1§

Problems

1. Show that the set of all real numbers, with the usual addition and
multiplication, constitutes a one-dimensional real vector space, and the
set of all complex numbers constitutes a one-dimensional complex
vector space.

2. Prove (1) and (2).
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Describe the span of M ={(1, 1, 1), (0,0, 2)} in R".

Which of the following subsets of R* constitute a subspace of R>?
[Here, x = (&1, &, £).]

(a) All x with & =¢, and &=0.

(b) All x with ¢, =& +1.

(c) All x with positive &, &, &.

(d) All x with & —&+& =k =const.

Show that {x,,-- -, x,}, where x;(t)=4¢, is a linearly independent set
in the space Cl[a, b].

Show that in an n-dimensional vector space X, the representation of

any x as a linear combination of given basis vectors e;,-- -, e, is
unique.
Let {e;,- - -, e,} be a basis for a complex vector space X. Find a basis

for X regarded as a real vector space. What is the dimension of X in
either case?

If M is a linearly dependent set in a complex vector space X, is M
linearly dependent in X, regarded as a real vector space?

On a fixed interval [a, b]< R, consider the set X consisting of all
polynomials with real coefficients and of degree not exceeding a given
n, and the polynomial x =0 (for which a degree is not defined in the
usual discussion of degree). Show that X, with the usual addition and
the usual multiplication by real numbers, is a real vector space of
dimension n+1. Find a basis for X. Show that we can obtain a
complex vector space X in a similar fashion if we let those coefficients
be complex. Is X a subspace of X?

If Y and Z are subspaces of a vector space X, show that YNZ is a
subspace of X, but YU Z need not be one. Give examples.

If M#J is any subset of a vector space X, show that span M is a
subspace of X.

Show that the set of all real two-rowed square matrices forms a vector
space X. What is the zero vector in X? Determine dim X. Find a basis
for X. Give examples of subspaces of X. Do the symmetric matrices
x € X form a subspace? The singular matrices?

(Product) Show that the Cartesian product X = X; X X, of two vector
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spaces over the same field becomes a vector space if we define the two
algebraic operations by

(x1, X2) +(y1, ¥2) = (X1 +y1, X2+ y2),
a(xy, X5) = (ax;, ax,).

14. (Quotient space, codimension) Let Y be a subspace of a vector
space X. The coset of an element x € X with respect to Y is denoted by
x+Y and is defined to be the set (see Fig. 12)

x+Y={v|v=x+y,yeY}h

Show that the distinct cosets form a partition of X. Show that under
algebraic operations defined by (see Figs. 13, 14)

Ww+HY)+(x+Y)=(w+x)+Y
a(x+Y)=ax+Y

these cosets constitute the elements of a vector space. This space
is called the quotient space (or sometimes factor space) of X by Y
(or modulo Y) and is denoted by X/Y. Its dimension is called the
codimension of Y and is denoted by codim Y, that is,

codim Y =dim (X/Y).

15. Let X=R® and Y ={£,,0,0)| £, €R}. Find XY, X/ X, X/{0}.

w+Y)+ (x+Y)=(w+x)+Y

x+Y x+Y

w+Y
/i Y Kx\( / Y
/ //
/ ! x
/ //

w
7

Fig. 12. Illustration of the notation  Fig. 13. Illustration of vector addition in a
x+Y in Prob. 14 quotient space (cf. Prob. 14)
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2(x +Y)= 2¢ t Y

/ x+Y

lx+v)=1a+y
2 2

Y

\X\W\\ \\

Fig. 14. Illustration of multiplication by scalars in a quotient space (cf. Prob. 14)

2.2 Normed Space. Banach Space

The examples in the last section illustrate that in many cases a vector
space X may at the same time be a metric space because a metric d is
defined on X. However, if there is no relation between the algebraic
structure and the metric, we cannot expect a useful and applicable
theory that combines algebraic and metric concepts. To guarantee such
a relation between ‘‘algebraic” and ‘‘geometric” properties of X we
define on X a metric d in a special way as follows. We first introduce
an auxiliary concept, the norm (definition below), which uses the
algebraic operations of vector space. Then we employ the norm to
obtain a metric d that is of the desired kind. This idea leads to the
concept of a normed space. It turns out that normed spaces are special
enough to provide a basis for a rich and interesting theory, but general
enough to include many concrete models of practical importance. In
fact, a large number of metric spaces in analysis can be regarded as
normed spaces, so that a normed space is probably the most important
kind of space in functional analysis, at least from the viewpoint of
present-day applications. Here are the definitions:

2.2-1 Definition (Normed space, Banach space). A normed space® X
is a vector space with a norm defined on it. A Banach space is a

3 Also called a normed vector space or normed linear space. The definition was given
(independently) by S. Banach (1922), H. Hahn (1922) and N. Wiener (1922). The theory

developed rapidly, as can be seen from the treatise by S. Banach (1932) published only
ten years later. :
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complete normed space (complete in the metric defined by the norm;
see (1), below). Here a norm on a (real or complex) vector space X is a
real-valued function on X whose value at an x € X is denoted by

[l (read “norm of x”)

and which has the properties

(N1) xll=0

(N2) [x|=0 <& x=0

(N3) llex| = el [l

(N4) Ix +ylI=]xl+ Iyl (Triangle inequality);

here x and y are arbitrary vectors in X and « is any scalar.
A norm on X defines a metric d on X which is given by

@ d(x, y)=[x—vyl (x, ye X)

and is called the metric induced by the norm. The normed space just
defined is denoted by (X, | - ||) or simply by X. &

The defining properties (N1) to (N4) of a norm are suggested
and motivated by the length |x| of a vector x in elementary vector
algebra, so that in this case we can write ||x||=]|x|. In fact, (N1) and
(N2) state that all vectors have positive lengths except the zero vector
which has length zero. (N3) means that when a vector is multiplied by
a scalar, its length is multiplied by the absolute value of the scalar.
(N4) is illustrated in Fig. 15. It means that the length of one side of a
triangle cannot exceed the sum of the lengths of the two other sides.

It is not difficult to conclude from (N1) to (N4) that (1) does define
a metric. Hence normed spaces and Banach spaces are metric spaces.

\
x ¥V nx Y
Hyll
y y
x IIx 1

Fig. 15. Tllustration of the triangle inequality (N4)
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Banach spaces are important because they enjoy certain proper-
ties (to be discussed in Chap 4) which are not shared by incomplete
normed spaces.

For later use we notice that (N4) implies

(¥)) Iyl =Ilxll| =y — xIl,

as the reader may readily prove (cf. Prob. 3). Formula (2) implies an
important property of the norm:

The norm is continuous, that is, x —— ||x|| is a continuous mapping
of (X, || into R. (Cf. 1.3-3.)

Prototypes of normed spaces are the familiar spaces of all vectors
in the plane and in three dimensional space. Further examples result
from Secs. 1.1 and 1.2 since some of the metric spaces in those sections
can be made into normed spaces in a natural way. However, we shall
see later in this section that not every metric on a vector space can be
obtained from a norm.

Examples

2.2-2 Euclidean space R" and unitary space C". These spaces were
defined in 1.1-5. They are Banach spaces with norm defined by

i 1/2
Q l=( X l&F) " ~ViEF+ - TIEF.

In fact, R" and C" are complete (cf. 1.5-1), and (3) yields the metric
(7) in Sec. 1.1: /

d(x, Y) = ”x - Y" = \/Tfl_ 771|2+ s 'gn - nnlz'
We note in particular that in R*> we have

Ixll = x| =vVé&© + &+ &2

This confirms our previous remark that the norm generalizes the
elementary notion of the length |x| of a vector.
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2.2-3 Space I°. This space was defined in 1.2-3. It is a Banach space
with norm given by

@ 1= (5 16r) "

In fact, this norm induces the metric in 1.2-3:

e 1/p
ate v =l—yl=( 3, l6-nk) "

Completeness was shown in 1.5-4.

2.2-4 Space I”. This space was defined in 1.1-6 and is a Banach
space since its metric is obtained from the norm defined by

llxl =sup &1

and completeness was shown in 1.5-2.

2.2-5 Space Cla, b]. This space was defined in 1.1-7 and is a Banach
space with norm given by

(5) [lxll = max [x(0)

where J=[a, b]. Completeness was shown in 1.5-5.

2.2-6 Incomplete normed spaces. From the incomplete metric spaces
in 1.5-7, 1.5-8 and 1.5-9 we may readily obtain incomplete normed
spaces. For instance, the metric in 1.5-9 is induced by the norm
defined by

(©) Il = j (0 de.

Can every incomplete normed space be completed? As a metric space
certainly by 1.6-2. But what about extending the operations of a vector
space and the norm to the completion? We shall see in the next section
that the extension is indeed possible.
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2.2-7 An incomplete normed space and its completion L’[a, b]. The
vector space of all continuous real-valued functions on [a, b] forms a
normed space X with norm defined by

) Il = (j x(tF dt)m.

This space is not complete. For instance, if [a, b]=[0, 1], the sequence
in 1.5-9 is also Cauchy in the present space X this is almost obvious
from Fig. 10, Sec. 1.5, and results formally by integration because for
n>m we obtain

> ! (n-mP? 1 1
1% — %ol —J; [x, () = %, (OT dt = - <3m i

This Cauchy sequence does not converge. The proof is the same as in
1.5-9, with the metric in 1.5-9 replaced by the present metric. For a
general interval [a, b] we can construct a similar’ Cauchy sequence
which does not converge in X.

The space X can be completed by Theorem 1.6-2. The completion
is denoted by L*[a, b]. This is a Banach space. In fact, the norm on X
and the operations of vector space can be extended to the completion
of X, as we shall see from Theorem 2.3-2 in the next section.

More generally, for any fixed real number p =1, the Banach space

L*[a, b]

is the completion of the normed space which consists of all continuous
real-valued functions on [a, b], as before, and the norm defined by

®) belp = ([ e ar) ™" /

The subscript p is supposed to remind us that this norm depends on
the choice of p, which is kept fixed. Note that for p =2 this equals (7).
For readers familiar with the Lebesgue integral we want to men-
tion that the space L”[a, b] can also be obtained in a direct way by the
use of the Lebesgue integral and Lebesgue measurable functions x on
[a, b] such that the Lebesgue integral of |x|° over [a, b] exists and is
finite. The elements of LP[a, b] are equivalence classes of those
functions, where x is equivalent to y if the Lebesgue integral of |x —y|”
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over [a, b] is zero. [Note that this guarantees the validity of axiom
(N2).]

Readers without that background should not be disturbed. In fact,
this example is not essential to the later development. At any rate, the
example illustrates that completion may lead to a new kind of elements
and one may have to find out what their nature is.

2.2-8 Space s. Can every metric on a vector space be obtained from
a norm? The answer is no. A counterexample is the space s in 1.2-1.
In fact, s is a vector space, but its metric d defined by

S |'fi_ni|
d(x,y)= ), S —t—
oy f;2’1+|«5—ml

cannot be obtained from a norm. This may immediately be seen from
the following lemma which states two basic properties of a metric d
obtained from a norm. The first property, as expressed by (9a), is
called the translation invariance of d.

2.2-9 Lemma (Translation invariance). A metric d induced by a norm
on a normed space X satisfies ’

(a) d(x+a,y+a)=d(x,y)
(9)
(b) d(ax, ay)=|a| d(x, y)

for all x, y, ae€ X and every scalar a.
Proof. We have
d(x+a,yta)=|x+a—(y+alll=lx—yll=d(x y)

and
d(ax, ay) =|lax —ayl|=|e|lx — y[|=|a| d(x, y). |

Problems

1. Show that the norm ||x|| of x is the distance from x to O.

2. Verify that the usual length of a vector in the plane or in three
dimensional space has the properties (N1) to (N4) of a norm.
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3. Prove (2).

4. Show that we may replace (N2) by
llx[l=0 == x=0

without altering the concept of a norm. Show that nonnegativity of a
norm also follows from (N3) and (N4).

5. Show that (3) defines a norm.

6. Let X be the vector space of all ordered pairs x=(&, &),
y =(ny, Mm2), - + - of real numbers. Show that norms on X are defined by

Ixlly =& +1&

Ixllo = (&7 + &'

]l = max {|&], | &}
7. Verify that (4) satisfies (N1) to (N4).

8. There are several norms of practical importance on the vector space of
ordered n-tuples of numbers (cf. 2.2-2), notably those defined by

llxlly = [&:] +]&| +- - “H|&]
llxll, = (& +|&l + - - - +]& )" (1<p<+w)
||x||m=max{|§1|, Y |§nl}'

In each case, verify that (N1) to (N4) are satisfied.
9. Verify that (5) defines a norm. 4

10. (Unit sphere) The sphere

S(0; 1) ={xe X ||lx]=1}

in a normed space X is called the unit sphere. Show that for the norms
in Prob. 6 and for the norm defined by

llxlla = &+ &

the unit spheres look as shown in Fig. 16.
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%l =1
lxll = 1
lx1l, = 1

llxll, = 1

7N\
N7,

Fig. 16. Unit spheres in Prob. 10
11. (Convex set, segment) A subset A of a vector space X is said to be
convex if x, ye A implies
M={zeX|z=ax+(1-a)y, 0sa=1}cA.

M is called a closed segment with boundary points x and y; any other
z € M is called an interior point of M. Show that the closed unit ball

BO; D={xeX|lx=1}

in a normed space X is convex.

(a) Convex (b) Not convex

Fig. 17. Illustrative examples of convex and nonconvex sets (cf. Prob. 11)



66 Normed Spaces. Banach Spaces

12. Using Prob. 11, show that
o(x)=(V |§1| + |§2|)2

does not define a norm on the vector space of all ordered pairs

x =(&, &), - - - of real numbers. Sketch the curve ¢(x)=1 and com-
pare it with Fig. 18.

Fig. 18. Curve ¢(x)=1 in Prob. 12

13. Show that the discrete metric on a vector space X#{0} cannet be
obtained from a norm. (Cf. 1.1-8.)

14. If d is a metric on a vector space X# {0} which is obtained from a
norm, and d is defined by

d(x, x)=0, d(x,y)=d(x y)+1 (x#y),

show that d cannot be obtained from a norm.

15. (Bounded set) Show that a subset M in a normed space X is bounded
if and only if there is a positive number ¢ such that ||x||= ¢ for every
x € M. (For the definition, see Prob. 6 in Sec. 1.2.)
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2.3 Further Properties of Normed Spaces

By definition, a subspace Y of a normed space X is a subspace of X
considered as a vector space, with the norm obtained by restricting the
norm on X to the subset Y. This norm on Y is said to be induced by
the norm on X. If Y is closed in X, then Y is called a closed subspace
of X

By definition, a subspace Y of a Banach space X is a subspace of
X considered as a normed space. Hence we do not require Y to be
complete. (Some writers do, so be careful when comparing books.)

In this connection, Theorem 1.4-7 is useful since it yields im-
mediately the following

2.3-1 Theorem (Subspace of a Banach space). A subspace Y of a
Banach space X is complete if and only if the set Y is closed in X.

Convergence of sequences and related concepts in normed spaces
follow readily from the corresponding definitions 1.4-1 and 1.4-3 for
metric spaces and the fact that now d(x, y) =[x —y||:

(i) A sequence (x,) in a normed space X is convergent if X
contains an x such that

lim ||x,, — x[|=0.
n—

Then we write x, — x and call x the limit of (x,).

(i) A sequence (x,) in a normed space X is Cauchy if for every
£ >0 there is an N such that

(1) % — xall < & forall m, n> N.

Sequences were available to us even in a general metric space. In
a normed space we may go an important step further and use series as
follows. /
Infinite series can now be defined in a way similar to that in
calculus. In fact, if (x) is a sequence in a normed space X, we can
associate with (x,) the sequence (s,) of partial sums

Spn=Xitx2+ 42X,
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where n=1,2,---.If (s,) is convergent, say,
Sp —> S, that is, s, —s||— 0,

then the infinite series or, briefly, series
2 Z Xe=Xx1+tX2+ -~
k=1

is said to converge or to be convergent, s is called the sum of the series
and we write

o
s = Z xk=x1+x2+'-'.
k=1

If ||xqf| +]lxol| + - - - converges, the series (2) is said to be absolutely
convergent. However, we warn the reader that in a normed space X,
absolute convergence implies convergence if and only if X is complete
(cf. Probs. 7 t0 9).

The concept of convergence of a series can be used to define a
“basis” as follows. If a normed space X contains a sequence (e,) with
the property that for every x € X there is a unique sequence of scalars
(o) such that

(3) lx—(ajes+ - - +ane,)|—> 0 (as n —> x)

then (e,) is called a Schauder basis (or basis) for X. The series

Z O er
k=1

which has the sum x is then called the expansion of x with respect to
(e.), and we write

(==}
X = Z A Cr.
k=1

For example, I” in 2.2-3 has a Schauder basis, namely (e,), where
e, = (8,j), that is, e, is the sequence whose nth term is 1 and all other
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terms are zero; thus
e1:(110> O’ 01 o .)
(4) €= (0’ 1’ 0’ 0’ o .)

e;=(0,0,1,0,---)
etc.

If a normed space X has a Schauder basis, then X is separable (cf.
Def. 1.3-5). The proof is simple, so that we can leave it to the reader
(Prob. 10). Conversely, does every separable Banach space have a
Schauder basis? This is a famous question raised by Banach himself
about forty years ago. Almost all known separable Banach spaces had
been shown to possess a Schauder basis. Nevertheless, the surprising
answer to the question is no. It was given only quite recently, by P.
Enflo (1973) who was able to construct a separable Banach space
which has no Schauder basis.

Let us finally turn to the problem of completing a normed space,
which was briefly mentioned in the last section.

2.3-2 Theorem (Completion). Let X =(X,||) be a normed space.
Then there is a Banach space X and an isometry A from X onto a
subspace W of X which is dense in X. The space X is unique, except for
isometries.

Proof. Theorem 1.6-2 implies the existence of a complete metric
space X =(X, d) and an isometry A: X —> W= A(X), where W is
dense in X and X is unique, except for isometries. (We write A, not T
as in 1.6-2, to free the letter T for later applications of the theorem in
Sec. 8. 2) Consequently, to prove the present theorem, we must make
X into a vector space and then introduce on X a suitable norm.

To define on X the two algebraic operations of a vector space, we
consider any X%,y €X and any representatives (x,)€ £ and (y,)e€ 7.
Remember that %X and y are equivalence classes of Cauchy sequences
in X. We set z, =x,, +y,. Then (z,) is Cauchy in X since

”Zn - Zm” = ”xn + Y _(xm + Ym)”é "xn - xm” +||Yn - Ym”

We define the sumZ =%+ of X and y to be the equivalence class for
which (z,.)is a representative; thus (z,) € Z. This definition is independ-
cnt of the particular choice of Cauchy sequences belonging to £ and
y. In fact, (1) in Sec. 1.6 shows that if (x,,) ~(x,") and (y,)~(y,"), then
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(%o +¥a)~(x."+y,") because
”xn + Yn _(xn, + yn,)” = ”xn - xn’” +”yn - yn,”'

Similarly we define the product af e X of a scalar a and £ to be the
equivalence class for which (ax,) is a representative. Again, this
definition is independent of the particular choice of a representative of
£. The zero element of X is the equivalence class containing all Cauchy
sequences which converge to zero. It is not difficult to see that those
two algebraic operations have all the properties required by the
definition, so that X is a vector space. From the definition it follows
that on W the operations of vector space induced from X agree with
those induced from X by means of A.

Furthermore, A induces on W a norm |- |, whose value at every
$=Ax e Wis |§|; =||x|l. The corresponding metric on W is the restric-
tion of d to W since A is isometric. We can extend the norm |-l to X
by setting || £, = d(0, £) for every £e X. In fact, it is obvious that |||,
satisfies (N1) and (N2) in Sec. 2.2, and the other two axioms (N3) and
(N4) follow from those for |-|l; by a limit process. 1

Problems

1. Show that ¢ < I” is a vector subspace of I” (cf. 1.5-3) and so is ¢, the
space of all sequences of scalars converging to zero.

2. Show that ¢, in Prob. 1 is a closed subspace of [, so that ¢, is complete
by 1.5-2 and 1.4-7.

3. In I, let Y be the subset of all sequences with only finitely many
nonzero terms. Show that Y is a subspace of [ but not a closed

subspace. .

4. (Continuity of vector space operations) Show that in a normed space
X, vector addition and multiplication by scalars are continuous opera-
tions with respect to the norm; that is, the mappings defined by
(x, y) — x+y and (a, x) —— ax are continuous.

5. Show that x, — x and y, — y implies x, +y, — x +y. Show that
a, —> a and x, —> x implies a,x, —> ax.

6. Show that the closure Y of a subspace Y of a normed space X is again

a vector subspace.
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7.

9.

10.

11

12.

13.

14.

15.

(Absolute convergence) Show that convergence of ||y,||+||yal|+[|ysl|+ - - -
may not imply convergence of y;+y,+y;+---. Hint. Consider Y in
Prob. 3 and (y,), where y, =(n{™), 0 =1/n? n{” =0 for all j# n.

If in a normed space X, absolute convergence of any series always
implies convergence of that series, show that X is complete.

Show that in a Banach space, an absolutely convergent series is
convergent.

(Schauder basis) Show that if a normed space has a Schauder basis, it
is separable.

Show that (e,), where e, =(8,), is a Schauder basis for 7, where
1=p<+oo.

(Seminorm) A seminorm on a vector space X is a mapping
p: X—R satisfying (N1), (N3), (N4) in Sec. 2.2. (Some authors
call this a pseudonorm.) Show that
p(0)=0,
lp(y) —p(®)=p(y —x).
(Hence if p(x)=0 implies x =0, then p is a norm.)

Show that in Prob. 12, the elements x € X such that p(x)=0 form a
subspace N of X and a norm on X/N (cf. Prob. 14, Sec. 2.1) is defined
by |I£]lo =p(x), where x € £ and £e X/N.

(Quotient space) Let Y be a closed subspace of a normed space
(X, || |D. Show that a norm || - || on X/ Y (cf. Prob. 14, Sec. 2.1) is defined
by

[1%llo = inf [|x|
xex

where % € X/Y, that is, X is any coset of Y.

(Product of normed spaces) If (X, | -[l;) and (X5,|-|) are normed
spaces, show that the product vector space X = X, X X, (cf. Prob. 13,
Sec. 2.1) becomes a normed space if we define

i

llxll = max (fxll:, [lx.]) [x = (x1, x5)].
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2.4 Finite Dimensional Normed Spaces

and Subspaces

Are finite dimensional normed spaces simpler than infinite dimensional
ones? In what respect? These questions are rather natural. They are
important since finite dimensional spaces and subspaces play a role in
various considerations (for instance, in approximation theory and
spectral theory). Quite a number of interesting things can be said in
this connection. Hence it is worthwhile to collect some relevant facts,
for their own sake and as tools for our further work. This is our
program in this section and the next one.

A source for results of the desired type is the following lemma.
Very roughly speaking it states that in the case of linear independence
of vectors we cannot find a linear combination that involves large
scalars but represents a small vector.

2.4-1 Lemma (Linear combinations). Let {x,, -, x,} be a linearly
independent set of vectors in a normed space X (of any dimension).
Then there is a number ¢>0 such that for every choice of scalars
@y, ", a, we have

@ loexxs+ - - - + x| Z c(lon| + - - - + o)) (c>0).

Proof. We write s =|ay|+ - - +|a,|. If s=0, all o; are zero, so
that (1) holds for any c¢. Let s>0. Then (1) is equivalent to the
inequality which we obtain from (1) by dividing by s and writing
Bi = ajs, that is,

@ [Buxit -+ Buxl= e (£ 18l-1).

/
Hence it suffices to prove the existence of a ¢ >0 such that (2) holds
for every n-tuple of scalars B, - -, B, with Y |B;|= 1.

Suppose that this is false. Then there exists a sequence (y,,) of
vectors

= Bkt + B, (£ 18m1=1)
j=1
such that ‘

[yl — 0 as m —> oo,
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Now we reason as follows. Since Y, |8{™] =1, we have |8{™|=1. Hence
for each fixed j the sequence

(B](m)) (B(l) (2) . )

is bounded. Consequently, by the Bolzano-Weierstrass theorem, (8™)
has a convergent subsequence. Let B; denote the limit of that subse-
quence, and let (y1,,») denote the corresponding subsequence of (y,,). By
the same argument, (y;,.) has a subsequence (y.,.) for which the
corresponding subsequence of scalars B5™ converges; let 8, denote the
limit. Continuing in this way, after n steps we obtain a subsequence
(Yum) = Y15 Yn2s = - °) Of (y,») whose terms are of the form

Z Y% (Zl lvi™l= 1)
i=
(m)

with scalars y{™ satisfying y{™—> B; as m —> ». Hence, as
m—> oo,

Ym —> y= Zl Bixi
i<

where Y |B;| =1, so that not all B; can be zero. Since {x;, - -, x,} is a
linearly independent set, we thus have y#0. On the other hand,
Yn.m —> y implies || yn.m/|l— [ly|, by the continuity of the norm. Since
[[Yinll — 0 by assumption and (y,,,.) is a subsequence of (y,,), we must
have ||y,.m||— 0. Hence |ly]|=0, so that y=0 by (N2) in Sec. 2.2.
This contradicts y#0, and the lemma is proved. 1

7
As a first application of this lemma, let us prove the basic

2.4-2 Theorem (Completeness). FEvery finite dimensional subspace Y
of a normed space X is complete. In particular, every finite dimensional
normed space is complete.

Proof. We consider an arbitrary Cauchy sequence (y,,) in Y and
show that it is convergent in Y; the limit will be denoted by y. Let
dim Y=nand {ey, - - -, e,} any basis for Y. Then each y,, has a unique
representation of the form

ym=aiert -t ae,
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Since (yn) is a Cauchy sequence, for every & >0 there is an N such that
|ym — y:| <& when m, r> N. From this and Lemma 2.4-1 we have for
some ¢ >0

n

(m) (3]

=c Z lej™ —aj”,
=1

n
e >lym =yl = 3, (af-ahe
li=1
where m, r> N. Division by ¢ >0 gives
< €
laf™ —a|= Y, |a™ — o) << (m, r>N).
i=1

This shows that each of the n sequences
(agm)) = (aEI)s a§2)7 o ) =L ,n

is Cauchy in R or C. Hence it converges; let «; denote the limit. Using
these n limits a,, - - -, a,, we define

y=aie;+ - +age,.

Clearly, y € Y. Furthermore,

Ve — Il =

n n
Z (a?n)_ai)ei = Z |a§M)—ai| ||e,~||.
i=1 ji=1

On the right, aj™”——a;. Hence |ly,—y|—0, that is, y,—y.
This shows that (y,,) is convergent in Y. Since (y,,) was an arbitrary
Cauchy sequence in Y, this proves that Y is complete. B

From this theorem and Theorem 1.4-7 we have

2.4-3 Theorem (Closedness). Every finite dimensional subspace Y of
a normed space X is closed in X.

We shall need this theorem at several occasions in our further
work.

Note that infinite dimensional subspaces need not be closed.
Exainple. Let X =C[0,1] and Y =span (xo, X1, - - -), where x;(t)=1’,
so that Y is the set of all polynomials. Y is not closed in X. (Why?)
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Another interesting property of a finite dimensional vector space
X is that all norms on X lead to the same topology for X (cf. Sec. 1.3),
that is, the open subsets of X are the same, regardless of the particular
choice of a norm on X. The details are as follows.

2.4-4 Definition (Equivalent norms). A norm | - || on a vector space
X is said to be equivalent to a norm | - ||, on X if there are positive
numbers a and b such that for all x € X we have

3) allxllo = lxl| = Bllxlo- i

This concept is motivated by the following fact.
Equivalent norms on X define the same topology for X.

Indeed, this follows from (3) and the fact that every nonempty
open set is a union of open balls (cf. Prob. 4, Sec. 1.3). We leave the
details of a formal proof to the reader (Prob. 4), who may also show
that the Cauchy sequences in (X, || - [[) and (X, || - [lo) are the same (Prob.
5).

Using Lemma 2.4-1, we can now prove the following theorem
(which does not hold for infinite dimensional spaces).

2.4-5 Theorem (Equivalent norms). On a finite dimensionai vector
space X, any norm || - || is equivalent to any other norm | - [o.

Proof. Letdim X=nand{e;," - -, e,} any basis for X. Then every
x € X has a unique representation

X=aie;t+ - +aye,.
By Lemma 2.4-1 there is a positive constant ¢ such that
Ixll= cllaa|+ - - - +leowm]).
On the other hand the triangle inequality gives

r n
o= 3, leylleflo =<k X, |as], ke = max o
1= 1=

Together, al|x|lo=|x| where a =c/k>0. The other inequality in (3) is
now obtained by an interchange of the roles of || || and | - ||o in the
preceding argument. 1
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This theorem is of considerable practical importance. For instance,
it implies that convergence or divergence of a sequence in a finite
dimensional vector space does not depend on the particular choice of a
norm on that space.

Problems

1. Give examples of subspaces of [~ and [> which are not closed.

2. What is the largest possible ¢ in (1) if X= R? and x,;=(1,0),
x,=(0,1)?If X=R*and x,=(1, 0, 0), x,=(0, 1, 0), x3=(0, 0, 1)?

3. Show that in Def. 2.4-4 the axioms of an equivalence relation hold (cf.
A1.4 in Appendix 1).

4. Show that equivalent norms on a vector space X induce the same
topology for X.

e

If |- and |- ||, are equivalent norms on X, show that the Cauchy
sequences in (X, | -|) and (X, || - |,) are the same.

6. Theorem 2.4-5 implies that |||, and |- |.. in Prob. 8, Sec. 2.2, are
equivalent. Give a direct proof of this fact.

7. Let |||, be as in Prob. 8, Sec. 2.2, and let || - | be any norm on that
vector space, call it X. Show directly (without using 2.4-5) that there is
a b>0 such that |x||=b ||x|, for all x.

8. Show that the norms || - ||; and || - ||, in Prob. 8, Sec. 2.2, satisfy
1
\—/—;”xuléu""zé"x"r
9. If two norms |- || and || - [, on a vector space X are equivalent, show
that (i) ||x, — x| — 0 implies (i) ||x, — x[o—> 0 (and vice versa, of

course).

10. Show that all complex m Xn matrices A =(a;) with fixed m and n
constitute an mn-dimensional vector space Z. Show that all norms on
Z are equivalent. What would be the analogues of || [, || - . and | - |
in Prob. 8, Sec. 2.2, for the present space Z?
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2.5 Compactness and Finite Dimension

A few other basic properties of finite dimensional normed spaces and
subspaces are related to the concept of compactness. The latter is
defined as follows.

2.5-1 Definition (Compactness). A metric space X is said to be
compact* if every sequence in X has a convergent subsequence. A
subset M of X is said to be compact if M is compact considered as a
subspace of X, that is, if every sequence in M has a convergent
subsequence whose limit is an element of M. 1

A general property of compact sets is expressed in

2.5-2 Lemma (Compactness). A compact subset M of a metric space
is closed and bounded.

Proof. For every x € M there is a sequence (x,) in M such that
x, — x; cf. 1.4-6(a). Since M is compact, x € M. Hence M is closed
because x € M was arbitrary. We prove that M is bounded. If M were
unbounded, it would contain an unbounded sequence (y,) such that
d(yn, b)>n, where b is any fixed element. This sequence could not
have a convergent subsequence since a convergent subsequence must
be bounded, by Lemma 1.4-2. &

The converse of this lemma is in general false.

Proof. To prove this important fact, we consider the sequence
(e,) in I, where e, =(8,;) has the nth term 1 and all other terms 0; cf.
(4), Sec. 2.3. This sequence is bounded since [le,||=1. Its terms
constitute a point set which is closed because it has no point of
accumulation. For the same reason, that point set is not compact. 1

However, for a finite dimensional normed space we have

2.5-3 Theorem (Compactness). In a finite dimensional normed space
X, any subset M < X is compact if and only if M is closed and bounded.

“ More precisely, sequentially compact; this is the most important kind of compact-
ness in analysis. We mention that there are two other kinds of compactness, but for
metric spaces the three concepts become identical, so that the distinction does not matter
in our work. (The interested reader will find some further remarks in A1.5. Appendix 1.)
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Proof. Compactness implies closedness and boundedness by
Lemma 2.5-2, and we prove the converse. Let M be closed and
bounded. Let dim X =n and {e,,- - -, e,} a basis for X. We consider
any sequence (x,,) in M. Each x,, has a representation

X =Eert o+ E e

Since M is bounded, 5o is (X), say, [|[x./|=k for all m. By Lemma
2.4-1,

n n
ezlnd =[5 émef=e 3 g
i= i=

where ¢>0. Hence the sequence of numbers (&™) (j fixed) is
bounded and, by the Bolzano-Weierstrass theorem, has a point of
accumulation &; here 1=j=n. As in the proof of Lemma 2.4-1 we
conclude that (x,) has a subsequence (z,) which converges to
z =1y &e;. Since Mis closed, z € M. This shows that the arbitrary sequence
(xm) in M has a subsequence which converges in M. Hence M is
compact. 1

Our discussion shows the following. In R" (or in any other finite
dimensional normed space) the compact subsets are precisely the
closed and bounded subsets, so that this property (closedness and
boundedness) can be used for defining compactness. However, this can
no longer be done in the case of an infinite dimensional normed space.

A source of other interesting results is the following lemma by
F. Riesz (1918, pp. 75-76).

2.5-4 F. Riesz’s Lemma. Let Y and Z be subspaces of a normed space
X (of any dimension), and suppose that Y is closed and is a proper
subset of Z. Then for every real number 0 in the interval (0, 1) there is a
z € Z such that

lzll=1, lz—yl=6 forallye Y.

Proof. We consider any ve Z—Y and denote its distance from
Y by aq, that is (Fig. 19),

a = inf [lo —y].
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Ve
N\

a\

7

X

Fig. 19. Notations in the proof of Riesz’s lemma

Clearly, a>0 since Y is closed. We now take any 6 € (0, 1). By the
definition of an infimum there is a yo€ Y such that

~N
a
& a=lo-yll=5
(note that a/@>a since 0<§<1). Let
( ) h c 1
z=c(v— where =
Yo llo = yoll

Then ||z||=1, and we show that ||z —y||= 6 for every ye Y. We have

lz=yll=llc(v—yo) =yl
=cllo—yo—c Myl

=cllv—yil
where

yi=Yotc 'y

The form of y; shows that y; € Y. Hence [lv— yi||=a, by the definition
of a. Writing ¢ out and using (1), we obtain

lz=yl=clo-ylzca=—=—=—0=6.
fo=vdl = a6

Since ye€ Y was arbitrary, this completes the proof. 1
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In a finite dimensional normed space the closed unit ball is
compact by Theorem 2.5-3. Conversely, Riesz’s lemma gives the
following useful and remarkable

2.5-5 Theorem (Finite dimension). If a normed space X has the
property that the closed unit ball M ={x |||x||=1} is compact, then X is
finite dimensional.

Proof. We assume that M is compact but dim X =, and show
that this leads to a contradiction. We choose any x; of norm 1. This x;
generates a one dimensional subspace X; of X, which is closed (cf.
2.4-3) and is a proper subspace of X since dim X =, By Riesz’s
lemma there is an x,€ X of norm 1 such that

1
lx2— x|z 6 =5

The elements x,, x, generate a two dimensional proper closed sub-
space X, of X. By Riesz’s lemma there is an x; of norm 1 such that for
all x e X> we have

1
| bea=xlz;
In particular, \
N |
ll3 — x4l 35 ,
1
||x3 —XZH 35 -

Proceeding by induction, we obtain a sequence (x,) of elements x, € M
such that

1
”xm_xn"gz (m#n).

Obviously, (x,) cannot have a convergent subsequence. This con-
tradicts the compactness of M. Hence our assumption dim X = is
false, and dim X <. 1

This theorem has various applications. We shall use it in Chap. 8
as a basic tool in connection with so-called compact operators.
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Compact sets are important since they are “well-behaved”: they
have several basic properties similar to those of finite sets and not
shared by noncompact sets. In connection with continuous mappings a
fundamental property is that compact sets have compact images, as
follows.

2.5-6 Theorem (Continuous mapping). Let X and Y be metric spaces
and T: X — Y a continuous mapping (cf. 1.3-3). Then the image of
a compact subset M of X under T is compact.

Proof. By the definition of compactness it suffices to show that
every sequence (y,) in the image T(M)< Y contains a subsequence
which converges in T(M). Since y, € T(M), we have y, = Tx, for some
X. € M. Since M is compact, (x,) contains a subsequence (x,, ) which
converges in M. The image of (x,,) is a subsequence of (y,) which
converges in-T(M) by 1.4-8 because T is continuous. Hence T(M) is
compact. 1

From this theorem we conclude that the following property,
well-known from calculus for continuous functions, carries over to
metric spaces.

2.5-7 Corollary (Maximum and minimum). A continuous mapping T
of a compact subset M of a metric space X into R assumes a maximum
and a minimum at some points of M.

Proof. T(M)cR is compact by Theorem 2.5-6 and closed and
bounded by Lemma 2.5-2 [applied to T(M)], so that inf T(M)e T(M),
sup T(M)e T(M), and the inverse images of these two points consist of
points of M at which Tx is minimum or maximum, respectively. 1

Problems

1. Show that R" and C" are not compact.

2. Show that a discrete metric space X (cf. 1.1-8) consisting of infinitely
many points is not compact.

3. Give examples of compact and noncompact curves in the plane R>.
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4. Show that for an infinite subset M in the space s (cf. 2.2-8) to be
compact, it is necessary that there are numbers vy, v,, - - * such that for
all x=(&(x))e M we have |&(x)|=1. (It can be shown that the
condition is also sufficient for the compactness of M.)

5. (Local compactness) A metric space X is said to be locally compact if
every point of X has a compact neighborhood. Show that R and C and,
more generally, R" and C" are locally compact.

6. Show that a compact metric space X is locally compact.

7. If dim Y < in Riesz’s lemma 2.5-4, show that one can even choose
6=1.

8. In Prob. 7, Sec. 2.4, show directly (without using 2.4-5) that there is an
a >0 such that allx|,=|x|. (Use 2.5-7.)

9. If X is a compact metric space and M < X is closed, show that M is
compact.

10. Let X and Y be metric spaces, X compact, and T: X — Y bijective
and continuous. Show that T is a homeomorphism (cf. Prob. 5, Sec.
1.6).

2.6 Linear Operators

In calculus we consid%he real line R and real-valued functions on R
(or on a subset of R). Obviously, any such function is a mapping’ of its
domain into R. In functional analysis we consider more general spaces,
such as metric spaces and normed spaces, and mappings of these
spaces.

In the case of vector spaces and, in particular, normed spaces, a
mapping is called an operator.

Of special interest are operators which “preserve’ the two alge-
braic operations of vector space, in the sense of the following definition.

2.6-1 Definition (Linear operator). A linear operator T is an
operator such that

(i) the domain %(T) of T is a vector space and the range %(T)
lies in a vector space over the same field,

®Some familiarity with the concept of a mapping and simple relatcd concepts is
assumed, but a review is included in A1.2; cf. Appendix 1.
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(ii) for all x, ye@(T) and scalars a,

T(x+y)=Tx+Ty
@
T(ax)=aTx. 1

Observe the notation; we write Tx instead of T(x); this simplifica-
tion is standard in functional analysis. Furthermore, for the remainder
of the book we shall use the following notations.

9(T) denotes the domain of T.

R(T) denotes the range of T.

N(T) denotes the null space of T.

By definition, the null space of T is the set of all x e %(T) such that
Tx = 0. (Another word for null space is “kernel.” We shall not adopt
this term since we must reserve the word ‘“kernel” for another purpose
in the theory of integral equations.)

We should also say somgthing about the use of arrows in con-
nection with operators. Let #(T) < X and #(T)< Y, where X and Y are
vector spaces, both real or both complex. Then T is an operator from
(or mapping of) @(T) onto R(T), written

T: (T)—> R(T),
or from 9(T) into Y, written
T: 9(T)—> Y.
If 9(T) is the whole space X, then—and only then—we write
T: X—>Y.
Clearly, (1) is equivalent to
) T(ax+By)=aTx+ BTy.

By taking a =0 in (1) we obtain the following formula which we
shall need many times in our further work:

A) T0=0.
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Formula (1) expresses the fact that a lincar operator T is a
homomorphism of a vector space (its domain) into another vector
space, that is, T preserves the two operations of vector space, in the
following sense. In (1) on the left we first apply a vector space
operation (addition or multiplication by scalars) and then map the
resulting vector into Y, whereas on the right we first map x and y into
Y and then perform the vector space operations in Y, the outcome
being the same. This property makes linear operators important. In
turn, vector spaces are important in functional analysis mainly because
of the linear operators defined on them.

We shall now consider some basic examples of linear operators
and invite the reader to verify the linearity of the operator in each
case.

Examples

2.6-2 Identity operator. The identity operator Ix: X — X is defined
by Ixx = x for all x € X. We also write simply I for Ix; thus, Ix = x.

2.6-3 Zero operator. The zero operator 0: X — Y is defined by
0x=0 for all xe X.

2.6-4 Differentiation. Let X be the vector space of all polynomials
on [a, b]. We may define a linear operator T on X by setting

Tx(t)=x'(t)

for every x € X, where the prime denotes differentiation with respect to
t. This operator T maps X onto itself.

2.6-5 Integration. A linear operator T from C[a, b] into itself can be
defined by

t

Tx(t) = J x(7) dr tela, b).

a

2.6-6 Multiplication by #. Another linear operator from Cl[a, b] into
itself is defined by

Tx(t) = tx(1).

T plays a role in physics (quantum theory), as we shall see in Chap. 11.
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2.6-7 Elementary vector algebra. The cross product with one factor
kept fixed defines a linear operator T;: R®*—— R>. Similarly, the dot
product with one fixed factor defines a linear operator T,: R> — R,
say,

Tox=x-a=&a1+&ar+Esas

where a =(q;)eR? is fixed.

2.6-8 Matrices. A real matrix A = (o) with r rows and n columns
defines an operator T: R" —— R’ by means of

y=Ax

where x =(§) has n components and y =(n,) has r components and
both vectors are written as column vectors because of the usual
convention of matrix multiplication; writing y = Ax out, we have

m app o2 o a|[é
2 ay ax cc an|| &
nr Qry (e 5] T QU

L& ]

T is linear because matrix multiplication is a linear operation. If A
were complex, it would define a linear operator from C" into C". A
detailed discussion of the role of matrices in connection with linear
operators follows in Sec. 2.9. 1

In these examples we can easily verify that the ranges and null
spaces of the linear operators are vector spaces. This fact is typical. Let
us prove it, thereby observing how the linearity is used in simple
proofs. The theorem itself will have various applications in our further
work.

2.6-9 Theorem (Range and null space). Let T be a linear operator.
Then:

(a) The range R(T) is a vector space.
(b) If dim 9(T)=n<w, then dim R(T)=n.

(¢) The null space N(T) is a vector space.
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Proof. (a)Wetakeanyy,, y,€ R(T)andshow thatay; + By, € R(T)
for any scalars «, 8. Since vy, y.€R(T), we have y,=Tx,,
y> = Tx, for some x;, x,€ D(T), and ax,+ Bx, € D(T) because B(T) is a
vector space. The linearity of T yields

T(ax1 + BXZ) = aTx1 + BTXz =ay, + Byz.

Hence ay; + By, e R(T). Since y,, y, € R(T) were arbitrary and so were
the scalars, this proves that R(T) is a vector space.

(b) We choose n+1 elements yq,- -+, y,.1 of R(T) in an
arbitrary fashion. Then we have y;=Txy, ", Yns1 = Tx,41 for some
X1, ", Xner in D(T). Since dim @(T)=n, this set {x1,***, Xn+1}
must be linearly dependent. Hence

X1t F o1 Xe1 =0
for some scalars a;,- -, a,41, not all zero. Since T is linear and

T0=0, application of T on both sides gives
T(aixi+ -+ +oni1Xp+) =01yt - -+ @i1Yar1 =0.

This shows that {y;, - * *, y.+1} is a linearly dependent set because the
a;’s are not all zero. Remembering that this subset of ®(T) was chosen
in an arbitrary fashion, we conclude that ®(T) has no linearly independ-
ent subsets of n+1 or more elements. By the definition this means
that dim R(T)=n.

(c¢) We take any x, x, € N(T). Then Tx; = Tx,=0. Since
T is linear, for any scalars a, 8 we have

T(ax1 + BX2) = aTx1 + BTXQ =0.
This shows that ax;+ Bx, € N(T). Hence N(T) is a vector space. |

An immediate consequence of part (b) of the proof is worth
noting:

Linear operators preserve linear dependence.

Let us turn to the inverse of a linear operator. We first remember
that a mapping T: @(T) — Y is said to be injective or one-to-one if
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different points in the domain have different images, that is, if for any

X1, X2 € N(T),

4 X1 # Xo — Tx, # Tx,;
equivalently,

(4% Tx,= Tx, - X1=X,.

In this case there exists the mapping

T R(T)— D)
(5

yO}“—) Xo

(yo=Txo)

which maps every yo€ R(T) onto that x,€ @(T) for which Tx,= y,. See

Fig. 20. The mapping T ' is called the inverse® of T.

2 (1) 1 2D

X Y

'/_ \ Vo= Txo
X

Fig. 20. Notations in connection with the inverse of a mapping; cf. (5)

From (5) we clearly have

T 'Tx=x for ali xe(T)

TT 'y=y for all yeR(T).

In connection with linear operators on vector spaces the situation
is as follows. The inverse of a linear operator exists if and only if the
null space of the operator consists of the zero vector only. More

®The reader may wish to review the terms “surjective” and “bijective” in A1.2,

Appendix 1, which also contains a remark on the use of the term “inverse.”
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precisely, we have the following useful criterion which we shall apply
quite often.

2.6-10 Theorem (Inverse operator). Let X, Y be vector spaces, both

real or both complex. Let T: 9(T)—— Y be a linear operator with
domain @(T)< X and range R(T)< Y. Then:

(a) The inverse T ': R(T) —> (T) exists if and only if
Tx =0 — x=0.
(b) If T™' exists, it is a linear operator.
(¢) If dim(T)=n<w and T ' exists, then dim R(T) = dim %(T).

Proof. (a) Suppose that Tx=0 implies x =0. Let Tx;= Tx,.
Since T is linear,

T(x1 _X2) = Tx1 - sz = O,

so that x; —x, =0 by the hypothesis. Hence Tx; = Tx, implies x; = x»,
and T ' exists by (4¥). Conversely, if T~' exists, then (4*) holds. From
(4*) with x,=0 and (3) we obtain

Tx;=T0=0 = x;=0.
This completes the proof of (a).

(b) We assume that T~ exists and show that T~ ! is linear.
The domain of T~ ' is ®R(T) and is a vector space by Theorem 2.6-9(a).
We consider any x;, x,€ %(T) and their images

yi=Tx, and y2=Tx,.
Then

x1=T 'y, and x=T 'y,.
T is linear, so that for any scalars @ and B we have

ay, + By2 = aTx1 + BTXz = T(ax1 + BX2).
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Since x; = T 'y;, this implies

Tl(ayl + Byz) =aXy + BXZ = aT_lyl + BT_lyz

and proves that T ' is linear.

(¢) We have dimR(T)=dim %(T) by Theorem 2.6-9(b),
and dim @(T)=dim ®(T) by the same theorem applied to T~ *. 1

We finally mention a useful formula for the inverse of the compos-
ite of linear operators. (The reader may perhaps know this formula
for the case of square matrices.)

2.6-11 Lemma (Inverse of product). Let T: X — Y and S: Y—Z
be bijective linear operators, where X, Y, Z are vector spaces (see
Fig. 21). Then the inverse (ST) ': Z —> X of the product (the compos-
ite) ST exists, and

(6) (ST '=T's7.

Proof. The operator ST: X — Z is bijective, so that (ST)™"
exists. We thus have

ST(Sn_l = IZ

where I, is the identity operator on Z. Applying S~' and using
S7'S = Iy (the identity operator on Y), we obtain

STIST(ST) ' =T(ST) '=S""'I,=S"".

(sT)"

Fig. 21. Notations in Lemma 2.6-11
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Applying T ' and using T 'T = Ix, we obtain the desired result

T'T(ST) '=(ST) '=T 'S .

This completes the proof. 1

Problems

1. Show that the operators in 2.6-2, 2.6-3 and 2.6-4 are linear.

2. Show that the operators Ty, - -, T, from R* into R* defined by

3.

4.

5.

8.

9.

10.

(&1, &) (£,0)

(&, &0, &)

(&1, & (&, &)

(&, &> (v&1, v&)
respectively, are linear, and interpret these operators geometrically.
What are the domain, range and null space of T,, T, T in Prob. 2?

What is the null space of T, in Prob. 2? Of T; and T, in 2.6-7? Of T in
2.6-47 '

Let T: X—— Y be a linear operator. Show that the image of a
subspace V of X is a vector space, and so is the inverse image of a
subspace W of Y.

. If the product (the composite) of two linear operators exists, show that

it is linear.

. (Commutativity) Let X be any vector space and S: X — X and

T: X —— X any operators. S and T are said to commute if ST =TS,
that is, (ST)x = (TS)x for all x€ X. Do T, and T, in Prob. 2 commute?

Write the operators in Prob. 2 using 2 X2 matrices.

In 2.6-8, write y = Ax in terms of components, show that T is linear
and give examples.

Formulate the condition in 2.6-10(a) in terms of the null space of T.
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11. Let X be the vector space of all complex 2 X2 matrices and define
T: X — X by Tx = bx, where b € X is fixed and bx denotes the usual
product of matrices. Show that T is linear. Under what condition does
T exist?

12. Does the inverse of T in 2.6-4 exist?

13. Let T: @9(T)—— Y be a linear operator whose inverse exists. If
{xy, -+, x,} is a linearly independent set in 9(T), show that the set
{Tx,,- - -, Tx,} is linearly independent.

14. Let T: X—— Y be a linear operator and dim X =dim Y=n <oo,
Show that ®R(T) =Y if and only if T * exists.

15. Consider the vector space X of all real-valued functions which are
defined on R and have derivatives of all orders everywhere on R.
Define T: X — X by y(t) = Tx(t) = x'(t). Show that R(T) is all of X
but T does not exist. Compare with Prob. 14 and comment.

2.7 Bounded and Continuous Linear Operators

The reader may have noticed that in the whole last section we did not
make any use of norms. We shall now again take norms into account,
in the following basic definition.

2.7-1 Definition (Bounded linear operator). Let X and Y be normed
spaces and T: 9(T)— Y a linear operator, where @(T)< X. The
operator T is said to be bounded if there is a real number ¢ such that
for all x e 9(T),

@ ITx]|= cllx]l. !

In (1) the norm on the left is that on Y, and the norm on the right
is that on X. For simplicity we have denoted both norms by the same
symbol | -||, without danger of confusion. Distinction by subscripts
(Ixllo, I Tx|l;, etc.) seems unnecessary here. Formula (1) shows that a
bounded linear operator maps bounded sets in %(T) onto bounded sets
in Y. This motivates the term ‘‘bounded operator.”

Warning. Note that our present use of the word “bounded” is
different from that in calculus. where a bounded function is one whose
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range is a bounded set. Unfortunately, both tcrms are standard. But
there is little danger of confusion.

What is the smallest possible ¢ such that (1) still holds for all
nonzero x € @(T)? [We can leave out x =0 since Tx =0 for x=0 by
(3), Sec. 2.6.] By division,

L

= #0
] 20

and this shows that ¢ must be at least as big as the supremum of the
expression on the left taken over @(T)—{0}. Hence the answer to our
question is that the smallest possible ¢ in (1) is that supremum. This
quantity is denoted by | T]; thus

T
?) ITl|= sup S—.
xeacn) |||
x#0

[IT]l is called the norm of the operator T. If @(T)={0}, we define
IT||=0; in this (relatively uninteresting) case, T=0 since T0=0
by (3), Sec. 2.6.

Note that (1) with ¢ =||T| is

(€) 1] = 1T ]l
This formula will be applied quite frequently.

Of course, we should justify the use of the term ‘“‘norm” in the
present context. This will be done in the following lemma.

2.7-2 Lemma (Norm). Let T be a bounded linear operator as defined
in 2.7-1. Then:

(a) An alternative formula for the norm of T is

@ ITl= sup [ Tx]|.
xea(T)

[lxll=1

(b) The norm defined by (2) satisfies (N1) to (N4) in Sec. 2.2.
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Proof. (a) We write ||x||=a and set y =(1/a)x, where x# 0. Then
lvll=llxll/a=1, and since T is linear, (2) gives

1
IT|= sup ——||Tx||— sup T(—— x) = sup [Tyl
xew(T) A xe(T) a ye@(T)
x#0 . x#0 llyll=1

Writing x for y on the right, we have (4).

(b) (N1) is obvious, and so is |[[0|=0. From |T|=0 we
have Tx =0 for all x € (T), so that T=0. Hence (N2) holds. Further-
more, (N3) is obtained from

sup [laT¢|= sup [a | Txl=a] sup [Tz

lIxll=1

where x € %(T). Finally, (N4) follows from

sup [[(Ty + T2)x|| = sup | Tix + Tox|| = sup || Tux||+ sup || Tox|;
lli=1 lll=1 lell=1 =1
here, xe(T). 1

Before we consider general properties of bounded linear
operators, let us take a look at some typical examples, so that we get a
better feeling for the concept of a bounded linear operator.

Examples

2.7-3 Identity operator. The identity operator I: X—— X on a
normed space X#{0} is bounded and has norm ||I||=1. Cf. 2.6-2.

2.7-4 Zero operator. The zero operator 0: X — Y on a normed
space X is bounded and has norm [|0]|=0. Cf. 2.6-3.

2.7-5 Differentiation operator. Let X be the normed space of all
polynomials on J=[0,1] with norm given |x||=max|x(¢)|, teJ A
differentiation operator T is defined on X by

Tx(t)=x'(t)
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where the prime denotes differentiation with respect to ¢ This operator
is linear but not bounded. Indeed, lct x,(t)=1(", where neN. Then
Ix./l=1 and

Tx(t) = x,'(t) = nt" ™"

so that || Tx,||=n and || Tx,||/|lx.|| = n. Since n €N is arbitrary, this shows
that there is no fixed number ¢ such that || Tx,||/||x.]|= c. From this and
(1) we conclude that T is not bounded.

Since differentiation is an important operation, our result seems to
indicate that unbounded operators are also of practical importance.
This is indeed the case, as we shall see in Chaps. 10 and 11, after a
detailed study of the theory and application of bounded operators,
which are simpler than unbounded ones.

2.7-6 Integral operator. We can define an integral operator
T: C[0,1]—C[0, 1] by

y=Tx where y(t)= j k(t, 7)x(7) dr.

(0]

Here k is a given function, which is called the kernel of T and is
assumed to be continuous on the closed square G=JXJ in the
tr-plane, where J=[0, 1]. This operator is linear.

T is bounded.

To prove this, we first note that the continuity of k on the closed
square implies that k is bounded, say, |k(t, 7)|=k, for all (t, 7)e G,
where kg is a real number. Furthermore,

|x(6)] = max [x(t)] = x|
teJ

Hence

r k(t, )x(7) dr

Iyl =Tl = max
0

éntlea]x I lk(t, 7)| |x(7)| dr

=ko ||x||
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The result is || Tx|| = ko || x||. This is (1) with ¢ = ko. Hence T is bounded.

2.7-7 Matrix. A real matrix A =(ay) with r rows and n columns
defines an operator T: R" —— R" by means of

(5) y=Ax

where x = (&) and y =(m;) are column vectors with n and r compo-
nents, respectively, and we used matrix multiplication, as in 2.6-8. In
terms of components, (5) becomes

n

(5" n = Z iy (f= L---,n).

k=1

T is linear because matrix multiplication is a linear operation.

T is bounded.

To prove this, we first remember from 2.2-2 that the norm on R"
is given by

n 1/2
l=( % &)

m=1

similarly for y eR". From (5) and the Cauchy-Schwarz inequality (11)
in Sec. 1.2 we thus obtain

7P = 3 = 5 [ 5 anss]

Noting that the double sum in the last line does not depend on x, we
can write our result in the form

r n
1 Tx|P = x| where ’= Zl kzl ap’
iSE

This gives (1) and completes the proof that T is bounded. 1§
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The role of matrices in connection with linear operators will be
studied in a separate section (Sec. 2.9). Boundedness is typical; it is an
essential simplification which we always have in the finite dimensional
case, as follows.

2.7-8 Theorem (Finite dimension). If a normed space X is finite
dimensional, then every linear operator on X is bounded.

Proof. Letdim X=n and {ey, - - -, e,} a basis for X. We take any
x =Y. &e; and consider any linear operator T on X. Since T is linear,

i1 =X e = S el el = maxi T E 6

(summations from 1 to n). To the last sum we apply Lemma 2.4-1 with
o; = § and x; = e¢. Then we obtain

1
X If;lé;"Z&e;

1
==l
Together,

1
I1Tx]|= v [l where y == max||Te,].

From this and (1) we see that T is bounded. [

We shall now consider important general properties of bounded
linear operators.

Operators are mappings, so that the definition of continuity (cf.
1.3-3) applies to them. It is a fundamental fact that for a linear
operator, continuity and boundedness become equivalent concepts.
The details are as follows.

Let T: 9(T)—— Y be any operator, not necessarily linear, where
@(T)cX and X and Y are normed spaces. By Def. 1.3-3, the
operator T is continuous at an xo€ D(T) if for every € >0 there is a
8 >0 such that

[ Tx — Txol| < e for all x € %(T) satisfying lx — xof < 6.

T is continuous if T is continuous at every x € @(T).
Now, if T is linear, we have the remarkable
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2.7-9 Theorem (Continuity and boundedness). Let T: 9(T)—> Y
be a linear’ operator, where %(T)< X and X, Y are normed spaces.
Then:

(a) T is continuous if and only if T is bounded.

(b) If T is continuous at a single point, it is continuous.

Proof. (a) For T=0 the statement is trivial. Let T#0. Then
[ T||#0. We assume T to be bounded and consider any xo<€%(T). Let
any £ >0 be given. Then, since T is linear, for every x € @(T) such that

>
[lx = xol| < & where =—
IT|

we obtain
Tx = Txol =[|T(x — x| = Tl[lx — xol <[ T8 = &.

Since xo€ @(T) was arbitrary, this shows that T is continuous.

Conversely, assume that T is continuous at an arbitrary x,€ @(T).
Then, given any & >0, there is a 6 >0 such that

(6) |Tx—Txo|=¢ for all x € @(T) satisfying lx — xol| = 6.

We now take any y# 0 in @(T) and set
8 8
X=Xxo+t—y. Then X—Xog=——=Y.
Iyl Iyl

Hence [|x —xo|| = 8, so that we may use (6). Since T is linear, we have

o o
175 Tl =17l = {2y )| =2
° i SR T

7 Warning. Unfortunately, continuous linear operators are called “linear
operators” by some authors. We shall not adopt this terminology; in fact, there are linear
operators of practical importance which are not continuous. A first example is given in
2.7-5 and further operators of that type will be considered in Chaps. 10 and 11.
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and (6) implies

8

£
Ty|=e. T =<1yl
i ITyl=e hus ITyli=7 Iyl

This can be written | Ty||= c||y|l, where c=¢/8, and shows that T is
bounded.

(b) Continuity of T at a point implies boundedness of T
by the second part of the proof of (a), which in turn implies continuity
of Tby (a). 1

2.7-10 Corollary (Continuity, null space). Let T be a bounded linear
operator. Then:

(@) x, —> x [where x,,, x € (T)] implies Tx,, —> Tx.

(b) The null space N(T) is closed.

Proof. (a) follows from Theorems 2.7-9(a) and 1.4-8 or directly
from (3) because, as n —> o,

1T, — Txl| = [ TCen = I = Tl = x| — 0.

(b) For every x e N(T) there is a sequence (x,) in N(T)
such that x, — x; cf. 1.4-6(a). Hence Tx, —> Tx by part (a) of this
Corollary. Also Tx =0 since Tx, =0, so that x e N(T). Since x € N(T)
was arbitrary, N'(T) is closed. 1

It is worth noting that the range of a bounded linear operator may
not be closed. Cf. Prob. 6.

The reader may give the simple proof of another useful formula,
namely,

) IT: Tl =Tl T, I =" (neN)
valid for bounded linear operators T,: X— Y, T;: Y— Z and
T: X— X, where X, Y, Z are normed spaces.

Operators are mappings, and some concepts related to mappings®

have been discussed, notably the domain, range and null space of an

8 A review of some of these concepts is given in A1.2; cf. Appendix 1.
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operator. Two further concepts (restriction and extension) will now be
added. We could have done this earlier, but we prefer to do it here,
where we can immediately give an interesting application (Theorem
2.7-11, below). Let us begin by defining equality of operators as
follows.

Two operators T; and T, are defined to be equal, written
T, = Tz,

if they have the same domain @(T;)=%(T>) and if Tix = T,x for all
xe %(Tl) = QD(T2)~

The restriction of an operator T: Z(T)——Y to a subset
B < %(T) is de